

Tutorial on Object Detection

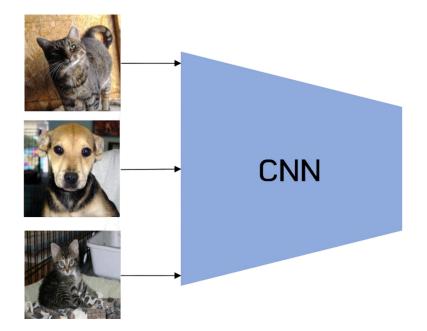
Tutor: Ayush Shrivastava

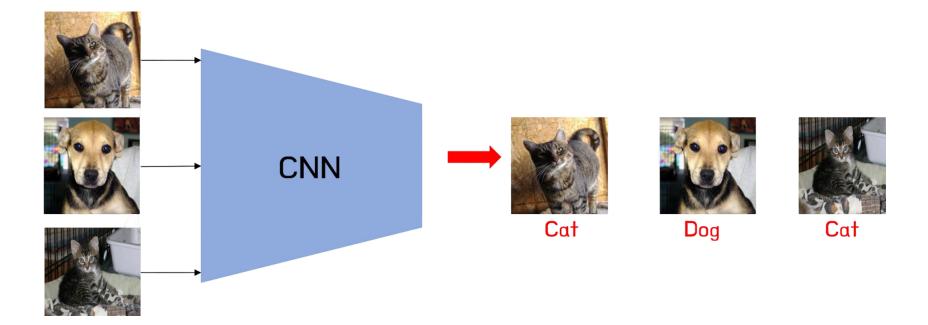
Date: 2nd June 2025

Cat

Dog

Cat





Exercise: Humans predict the labels

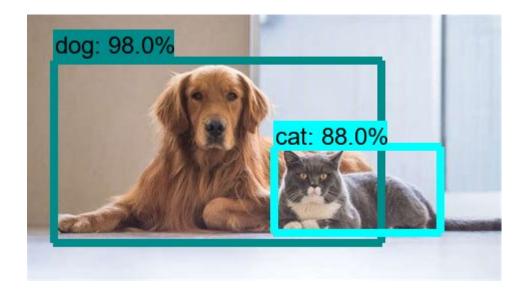
Cat or Dog?

Cat or Dog?

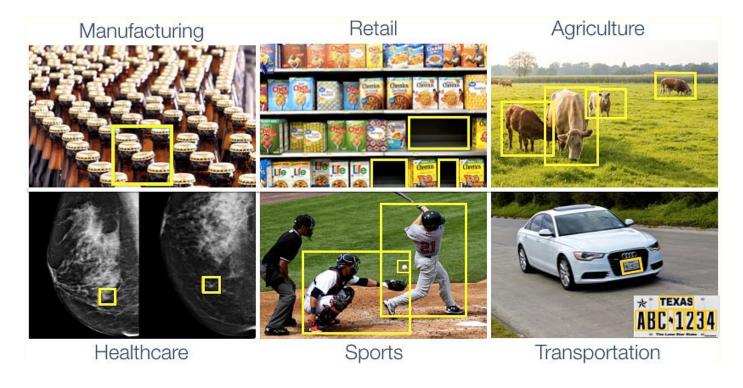
Cat or Dog?

Classification is not enough

While classification tells us what is in an image, it does not tell us where the object is located.



Use Cases of Object Detection



For a simple classification task you require two things

- 1. Image
- 2. Label

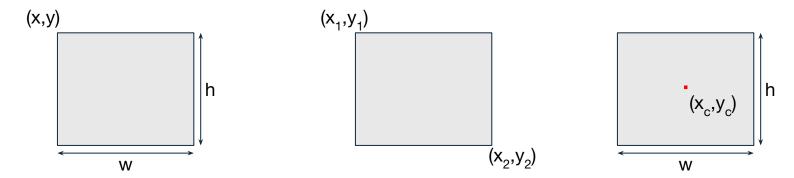
<CAT>

Image

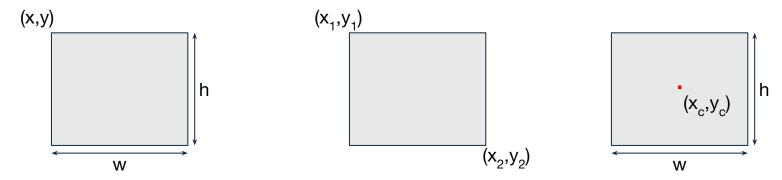
Label

For object detection you would need a box and class per object. What do you need to make a box?

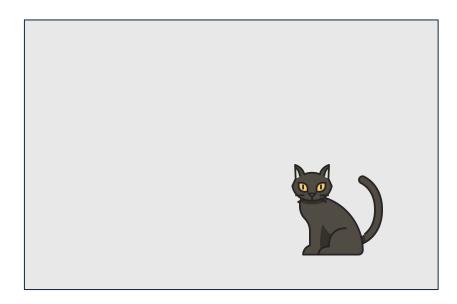
For object detection you would need a box and class per object. What do you need to make a box?



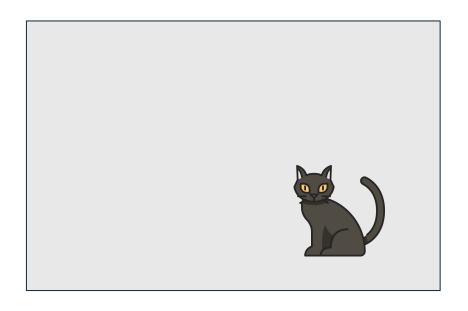
For object detection you would need a box and class per object. What do you need to make a box?



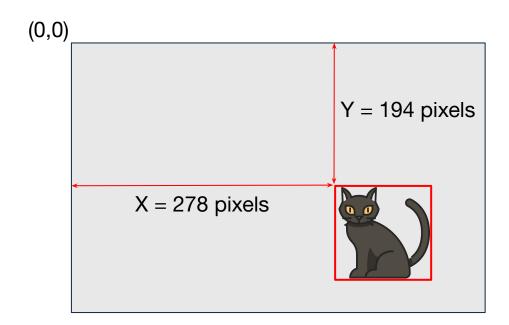
Now an annotation of an object would look like one of these



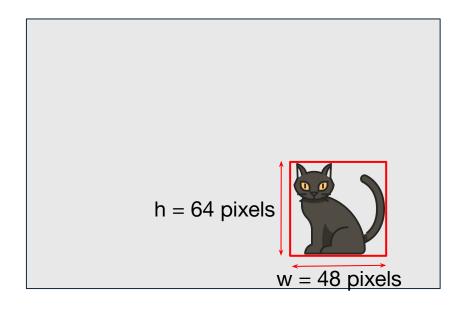
We have this image named img.jpg



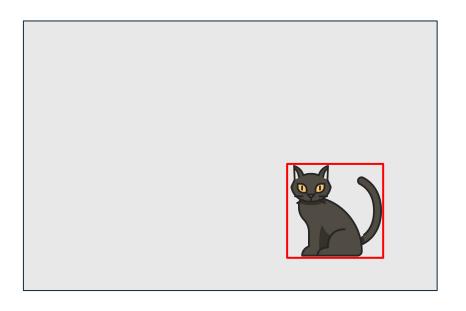
Class = CAT (Encoded as 2)

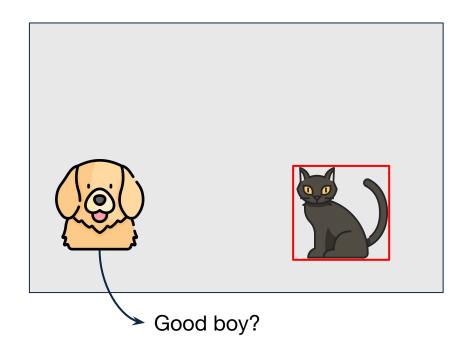


Top corner of bounding box lies at (278,194)

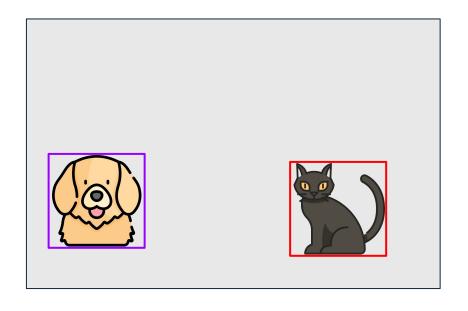


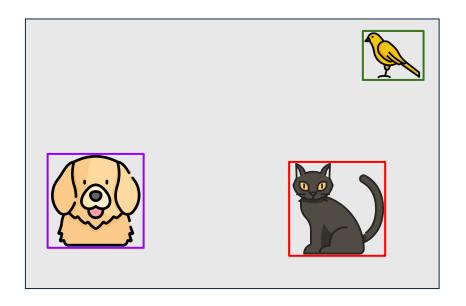
Top corner of bounding box lies at (278,194)

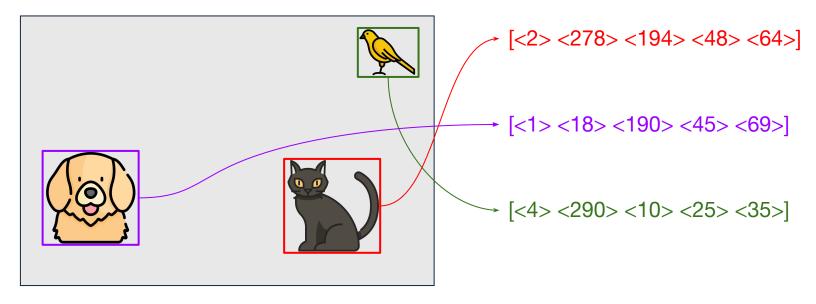




[<2> <278> <194> <48> <64>]







Each object of interest gets a bounding box annotation.

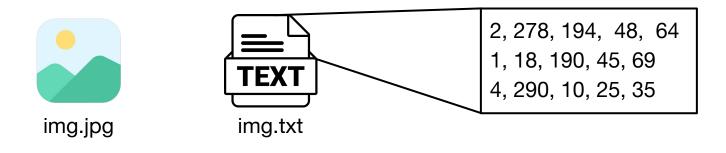
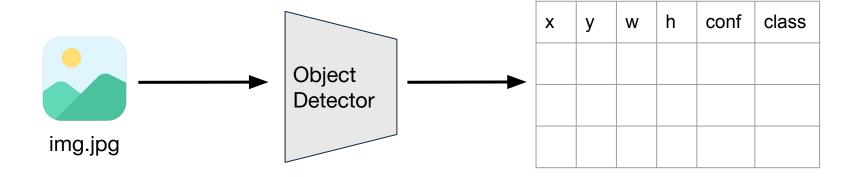


Image Annotation

Object Detector Output



Classification Metrics

Let's say you train a classifier.

How do you estimate as classifier performs well? What do you look at?

Classification Metrics

Let's say you train a classifier.

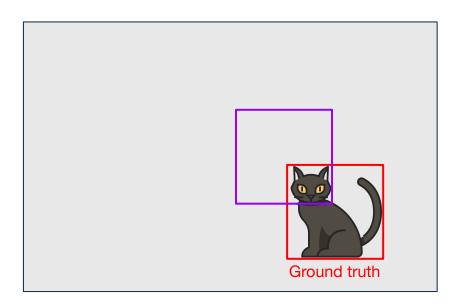
How do you estimate as classifier performs well? What do you look at?

- Accuracy
- Precision
- Recall
- F1 Score

I train two Object Detectors

I train two Object Detectors.

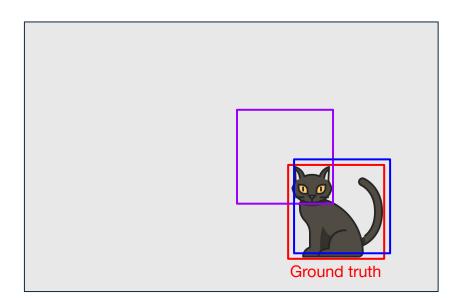
My first object detection algorithm predicts the purple bounding box



Is purple box a good prediction?

I train two Object Detectors.

My first object detection algorithm predicts the **purple** bounding box My second object detection algorithm predicts the **blue** bounding box

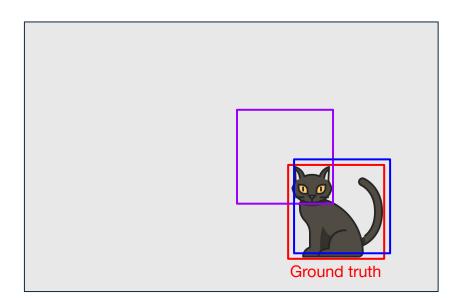


Is purple box a good prediction?

What about this **blue** one?

I train two Object Detectors.

My first object detection algorithm predicts the **purple** bounding box My second object detection algorithm predicts the **blue** bounding box

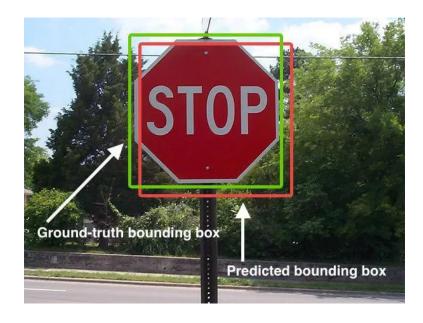


Is purple box a good prediction?

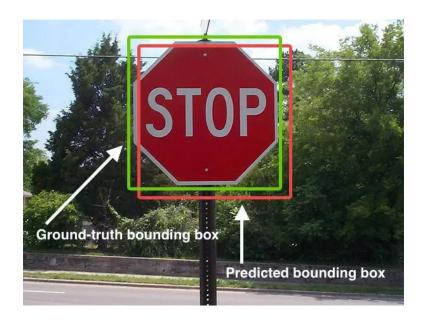
What about this **blue** one?

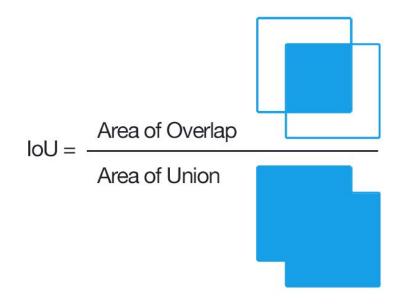
Why is blue better? How do you measure the fitness or accuracy of a bounding box?

IoU: Intersection over Union



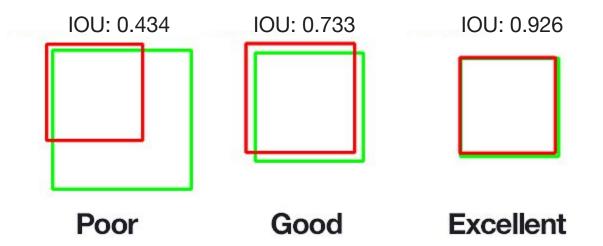
IoU: Intersection over Union



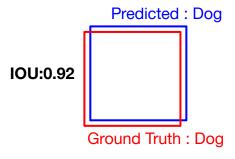


IoU: Intersection over Union

Generally an IOU of 0.5 is considered good enough but it could vary based on the use-case

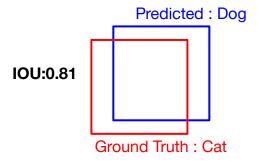


True Positives



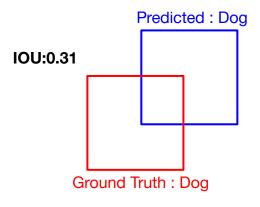
- IOU > Threshold
- Class label of ground truth matches with predicted label
- Model predicted the right object and also predicted it at the correct location

False Positives



- IOU > Threshold
- Class label of ground truth do not match with predicted label
- Model predicts the wrong object even though the bounding box location is correct

False Positives



- IOU < Threshold
- Class label of ground truth matches with predicted label
- Model predicts the object correctly but the bounding box location is not good enough

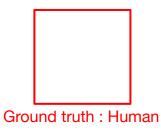
False Positives

? Ground Truth?

- No matching ground truth exists for the predicted bounding box
- Model predicts object when none exists

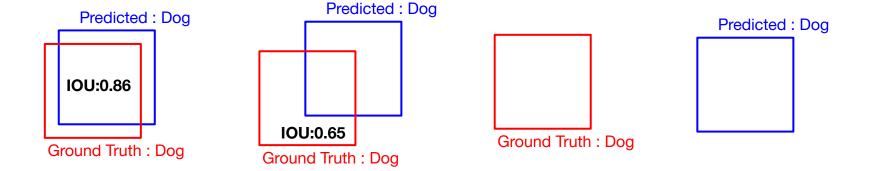
False Negatives

? Predicted?

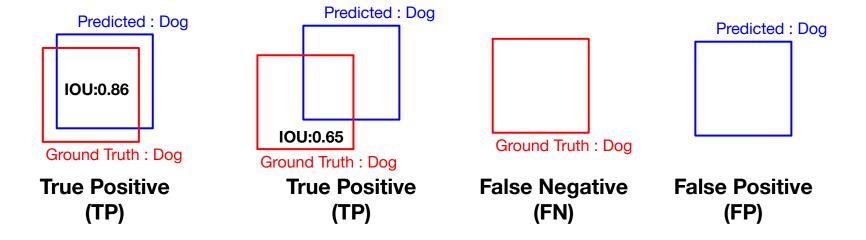


- Ground truth bounding boxes without any predicted box
- Model unable to detect the existence of object

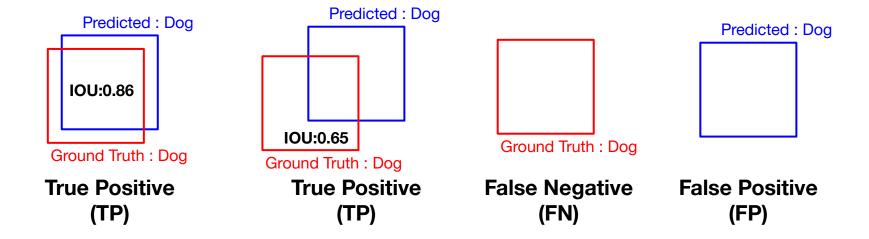
Precision and Recall are predicted per image given an **IOU threshold = 0.5**.



Precision and Recall are predicted per image given an **IOU threshold = 0.5**.

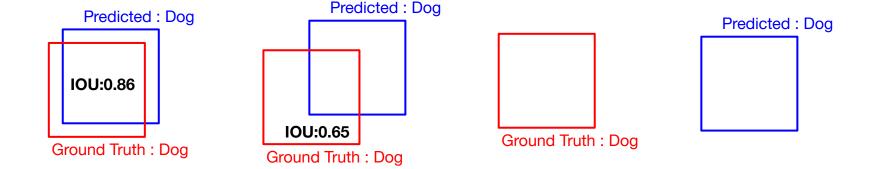


Precision and Recall are predicted per image given an **IOU threshold = 0.5**.

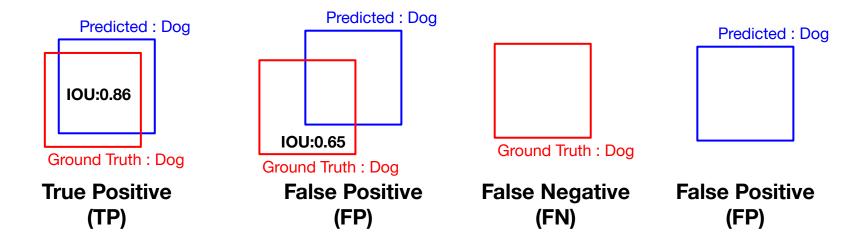


Precision =
$$TP/(TP + FP) = \frac{2}{3}$$
 Recall = $TP/(TP + FN) = \frac{2}{3}$

Precision and Recall are predicted per image given an **IOU threshold = 0.75**.

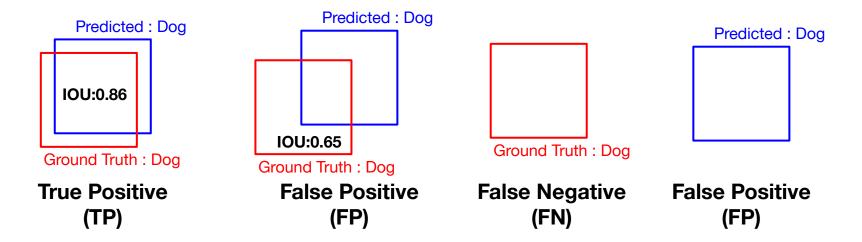


Precision and Recall are predicted per image given an **IOU threshold = 0.75**.



Precision =
$$TP/(TP + FP) = \frac{1}{3} Recall = TP/(TP + FN) = \frac{1}{2}$$

Precision and Recall are predicted per image given an **IOU threshold = 0.75**.

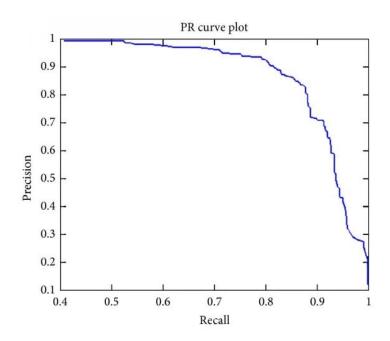


Precision =
$$TP/(TP + FP) = \frac{1}{3} Recall = TP/(TP + FN) = \frac{1}{2}$$

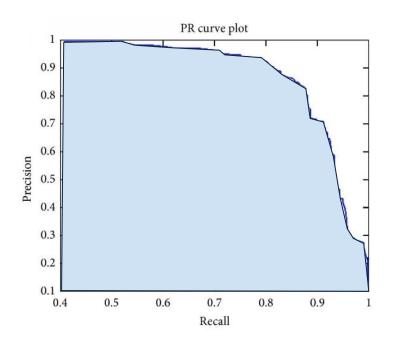
Average Precision (AP)

Class = Dog		
Image	Precision	Recall
img_1.png	1.0	0.2
img_2.png	1.0	0.2
img_3.png	0.67	0.4
img_97.png	0.4	0.6
img_98.png	0.5	0.8
img_99.png	0.67	1.0

Average Precision (AP)

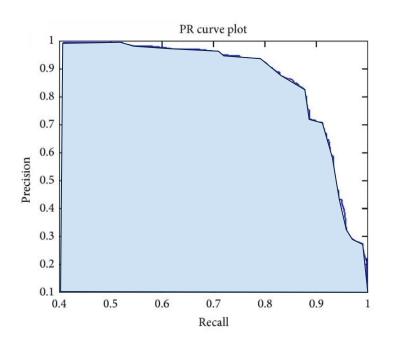


Average Precision (AP)



Area under the PR Curve = **Average Precision**

Mean Average Precision (mAP)



Area under the PR Curve = Average Precision

Class	Avg Precision
Dog	0.85
Cat	0.43
Bird	0.76

Mean Average Precision: 0.64 (mAP)

Mean Average Precision (mAP)

mAP50:

Mean Average Precision calculated at IoU threshold of 0.5

mAP50-95:

The average of the mean average precision calculated at varying IoU thresholds, ranging from 0.50 to 0.95. It gives a comprehensive view of the model's performance across different levels of detection difficulty.

Time for some Handson!

Open this Colab file https://tinyurl.com/IITGN-Tut1

Open https://roboflow.com/ and click on get started

Thank you!

