

Low-Cost Diagnostics

Mohit Jain Microsoft Research India

Access to Health

Skewed Doctor-to-Patient ratio Unskilled healthcare workers Long waiting Transportation Loss of income

Vision

To develop low-cost smartphonebased diagnostic tools

with AI assistant

to enable CHWs, teachers, primary clinicians, etc.

to perform preliminary screening with minimal training.

Collaborators: Sankara Eye Hospital, WeltHungerHilfe

Dry Eye Detection

Collaborator: Sankara Eye Hospital

Refractive Error Estimation

Collaborator: Sankara Eye Hospital

Estimation: Lung Disease, Height, and BP

Collaborator: WHH

SmartKC Past, Present, Future

Mohit Jain, Nipun Kwatra RF: Siddhartha Gairola (past), Vaibhav Ganatra (present) In collaboration with doctors at **Sankara Eye Hospital** <u>Microsoft Research India</u>

Smartphone-based Corneal Topographer for Keratoconus Diagnosis

Mohit Jain, Nipun Kwatra RF: Siddhartha Gairola (past), Vaibhav Ganatra (present) In collaboration with doctors at **Sankara Eye Hospital** <u>Microsoft Research India</u>

Keratoconus Disease

Distorts cornea into a cone-like shape Impact teens Causes (partial) blindness

Affects 2.3% people in India

Treatment:

- \rightarrow Contact lenses
- \rightarrow Corneal cross-linking
- \rightarrow Corneal transplant

Early Diagnosis is the Key!

Diagnostics: Placido Disc

Mires

Cheap | Doctor needed | Low accuracy

Diagnostics: Corneal Topographers

Optikon Keratron

Medmont E 300

Zeiss Atlas 9000

NIDEK Scan III

Expensive No doctor needed High accuracy

13

Curvature (Axial and Tangential) Map, sim-K1 (steepest), sim-K2

Goal

To develop a **low-cost portable** corneal topographer, which **captures the mire image** and **outputs curvature maps**.

I. Placido Disc

. Placido Disc

Weighs: 140 grams | Costs: Rs 2500 (\$33)

Real-time on-device Image Processing

Al assisted app

Real-time Checks:

- Exposure
- Sharpness

Center alignment Auto-capture

II. Heatmap Generation: Image Processing

22

Working Distance Computation

Working distance = gap_{base} + placido_length + gap_{top}

Two eye properties:

- the radius of the human cornea is similar (7.79±0.27mm),
- the shape of the cornea is distorted mainly in the central region

For a given gap_{top}, the radius of the mire reflections in the outer region is same across patients.

Simulation environment followed by a simple regression model to learn mapping between gap_{top} and radius of the outer mire.

Data and Evaluation

57 patients (35 female, 22 male), age=23.7±7.6 years

101 eyes [67 non-keratoconus and 34 keratoconus]

4 doctors rating: non-keratoconus, keratoconus, retake

Results

	Device	Sensitivity	Specificity
	Keratron	100.0%	65.8%
Doctor I	SmartKC	93.5%	95.9%
	Keratron	100.0%	93.3%
Doctor 2	SmartKC	92.3%	100.0%
Doctor 3	Keratron	94.1%	52.6%
	SmartKC	93.7%	100.0%
	Keratron	100.0%	53.8%
Doctor 4	SmartKC	94.1%	100.0%
Overall	Keratron	100.0%	64.5%
	SmartKC	<mark>94.1%</mark>	<mark>100.0%</mark>

Sensitivity: **92.3 - 94.1%**

To correctly identify people **with** Keratoconus. Sensitivity = TP/(TP+FN)

Specificity: **95.9% - 100.0%**

Test to correctly identify people **without** Keratoconus. Specificity = TN/(TN+FP)

What Next?

What Next?

Universities and Orgs Reached

Research Orgs

Ophthalmologist

<u>Manufacturers</u> Device

CELA

Thought Leader

SmartKC-A-Smartphone-based-Cor	🖈 Edit Pins 👻 🔇		
	Q Go to file	t Add file 👻	
😫 ganatra-v Updated segmentation network 🗸		d9191fa · 5 months ago	
github/workflows	Create codeql-analysis.yml		
azure_function/file_uploader Merge branch 'main' of https://github.com/microsoft,		com/microsoft/Smart	
🖿 data	Updating sample images and their hea	tmap results	
enhance_img	deleting .pyc files		

Disclaimer

The software and hardware described in this repository is provided for research and development use only. The software and hardware are not intended for use in clinical decision-making or for any other clinical use, and their performance for clinical use has not been established. You bear sole responsibility for any use of this software and hardware, including incorporation into any product intended for clinical use.

InstaKC by Remidio

What Next?

based Corneal Topographers

Limitations

- Curvature underestimation in severe cases: Improper mire segmentation
- 2. Curvature overestimation in normal/mild cases: **Incorrect mire localization** due to missing mire segments
- 3. Errors compounded in 3D reconstruction (Arc-Step)

Gold Standard

Errors in Mire Localization

Faulty 3D reconstruction

Faulty Axial Heatmap

Solution 1

U-Net based Mire Segmentation

Existing: Image-processing based fingerprint-detection algo.

Limitation: Assumed mires to be circular, leading to underestimation in severe cases.

Solution: Trained a U-Net for mire segmentation.

- Combined data augmentation and pseudolabels from existing algorithm for training
- Manually filtered out erroneous cases for training (shown)

Solution 2

Graph based Mire Localization

Existing: Radial Scanning algorithm.

Limitation: Assumed mires to be complete – did not account for broken mire segments. This led to mire shifts and artifacts in the heatmaps.

Solution: Use spatial information from the neighbourhood to identify broken mire segments and correct mire shifts.

Solution 3

Robust 3D Reconstruction

Existing: Arc-Step

Limitation: Assumed mires to be complete – not compatible with broken mire segments; requires interpolation in 2D space.

Solution: Enable compatibility with broken mires to allow interpolation in 3D space

Results

Results: Sim-K and Keratoconus

		Sim-K1			Sim-K2		
		MAE	MAPE	Corr.	MAE	MAPE	Corr.
Success Set	SmartKC	1.29	2.64	0.89	2.25	4.82	0.066
	SmartKC++	1.33	2.72	0.92	1.38	3.04	0.78
Failure Set	SmartKC	4.22	7.49	0.62	8.22	16.15	-0.25
	SmartKC++	1.78	3.03	0.925	2.01	3.94	0.928

SmartKC++ exhibits similar performance on both success and failure sets

Device	KT Condition	Acc.	Sens.	Spec.	Prec.	Recall	F1
Keratron	K1 >46.995 or (K1 - K2) >1.523	80.37	85.71	70.27	84.51	85.71	85.11
SmartKC	K1 >44.35 or K1-K2 >2.644	81.32	87.27	72.22	82.76	87.27	84.96
SmartKC++		89.01	87.27	91.67	94.12	87.27	90.57

SmartKC++ **outperforms** SmartKC on Automated Keratoconus Detection

What Next?

Tear Breakup Time

Break Types

Line Break

Merge Break

Out-of-shape Break

Distortion Break

Video Processing Pipeline

Results

Comparison with medical devices

Device	Threshold (s)	Sensitivity (%)	Specificity (%)
Tomey RT-7000 Keratometer	5	82	60
IDRA Plus	7.75	89	69
Oculus Keratograph 5M	6.69	80	67.59
DEDector – Auto (ours)	10	77.78	78.57

Comparison with other screening tools

Method	Phone	Eval Set Size	Acc.	Sens.	Spec.
DryEyeRhythm	Yes	82 (42 DED)	71.95	50.00	95.00
DEvice©(AI, Rome, Italy)	No	40 (20 DED)	77.50	60.00	95.00
DEDector - Manual (ours)	Yes	46 (18 DED)	80.43	77.78	82.14
DEDector - Auto (ours)	Yes	46 (18 DED)	78.26	77.78	78.57

What Next?

Keratoconus: Corneal Tomographer

- Keratoconus manifests on the posterior corneal surface
- Corneal Tomographer captures individual cross-sections
 of the cornea
 - \rightarrow Consolidate information for 3D reconstruction
 - → Generate Pachymetry map

Pentacam Report

Scheimpflug Principle

are using. If you the the depth of field will be to infinity. ↓ For annera has a hyperfe

Our Approach

- Involves a tilt between three planes:
 - Object, Lens, and Image.
- To focus on a tilted object w.r.t the lens plane

Conclusion

- Diagnostics device research is complex, takes time
- But its highly rewarding and impactful!
- Interdisciplinary collaboration is critical for success
- One research thread often branches into multiple new research opportunities
- Real-world deployments provide valuable insights

Thank You!

Mohit Jain mohja@microsoft.com Microsoft Research India