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Complexity of Managing Electric Mobility Operations
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Key Issues: Key Issues: Key Issues:
= Difference in price by source — = Mix of charging station types = Differing range based on vehicle type
wholesale/retail = Variable usage based on location and micro demand factors = Differing access to charging points

= Differences in price basedon = Mixed ownership — private, enterprise, fleet operator, public = Differing ownership
time of day/year
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Electric Mobility Challenges for Fleet Operator

FIND available chargers HOW to make money from
when charging demand is high? (captive) chargers when not in use?

WHEN to charge? HOW much to
charge? HOW fast to charge?
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Q

WHEN/WHERE can EVs take part in value-

added services & for HOW long? HOW to operate a mixed fleet?

(ICEVs & EVs)
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Why are these problems complex and hard?

* Large scale of operations
* Heterogeneity of system components

* Dynamic and uncertain operating conditions

* Goal-driven decision making and control with time-bounded

task completion guarantees
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Agent-based L20 Approach to Electric Vehicle Routing Problem
with
Vehicle-to-Grid Supply

A. Narayanan, P. Misra, A. Ojha, V. Bandhu, S. Ghosh, and A. Vasan, “A Reinforcement Learning Approach for Electric Vehicle Routing Problem with Ve hicle-to-Grid Supply” AMAAS (ALA WKSHP), 2022.



Business Problem

Last-mile delivery is the MOST expensive (> 50% of the overall shipping cost) part of the logistic and e-commerce process!

[

Business Objective: Reduce Operations Cost
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(Emerging) Business Solution

-

Fleet Electrification
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(New Proposal) Business Solution

© Prasant Misra

[

: 3

Multi-service Delivery Model:

Deliver GOODS

+ Deliver (or Sell) ENERGY ﬂ

Mobile DER




Research Problem

Design a scalable EV routing algorithm that reduces the fleet-level trip cost with multi-service delivery
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Customer Discharging Station
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Solution Approach

Customer Discharging Station
(demand for goods) (demand for energy)
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Challenges Approach

= Supply needs to match the Demand both in space and time Agent based L20 that learns routing policies
= VRP becomes even harder with EV related constraints
= Difficult to scale to large problem instances using existing techniques
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Problem Description

= Customer order fulfillment list (from fulfillment center)
= Peak energy demand periods (from grid)
= Starting state-of-charge (SOC) of all EVs in the fleet (Q)

Fleet Operator Constraint

. @ = (Mandatory) EVs must complete all customer deliveries
ﬁ = (Optional) EVs can sell power to the grid, where possible

= The entire trip (depot-depot) must be managed within Q; without recharging

= All EVs are charged to Q at the depot, before trip commencement

= Routing plan optimizing cost of fleet operations

© Prasant Misra



System Model

EV Set X

‘ {vo} O Customer Set K O Discharging Station Set P

Complete Undirected Graph G = (V, E) = |X|=u
* SetofnodesV={vUKUP = |K|l=m
= SetofedgesE={(i,j): i,jEV,i#j} * |P[=n
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Decision Variables

ay; indicates, if edge ij is traversed by an EV (binary)
V; service time at discharging station node i

T; time-of-arrival at node i

6, remaining battery capacity on arrival at node i
A; remaining cargo on arrival at node i

Parameters
C carrying capacity of each EV

Q starting state-of-charge (SoC) of each EV

c; demand (of goods) at node i

S; service time at node i

e earliest start of service at node {

l; latest start of service at node i

d; distance between nodes i and j

t; travel time between nodes i and j

H charge consumption rate (kWh/km)

b energy consumed in travelling between i and
J(=H. dij)

R discharging rate of each discharging station

G} start time — grid demand at node i

G? | endtime - grid demand at node i



Optimization Problem

Objective: Minimize the Trip Cost of the EV Fleet

M=min(Y1.zdij.a}§-+Y2. a(l)li _YS-EEV;L *zalij )

uex UEXIEV UEXIiEP JEV
Total distance Total EVs Total time spend by EVs
travelled by EVs used in a trip at discharging stations

Constraints

[C1]: Ensure every customer is visited exactly once, while making it optional to visit any of the discharging stations

z Z a}j-zl Vi €K

UEXJEV,i# )
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Optimization Problem

[C2]: Ensure flow conservation (at each node: # incoming edges = # outgoing edges)

Z aj = Z aji Vi eV,Vvu € X

JEV,i# ] kKEV,i%]

[C3]: Ensure time feasibility of arcs leaving customers and the depot

T+ (b +s).afi— 1. (1 —ay) <7} Vi €K,Vi €V,Vu €X

[C4]: Ensure time feasibility of arcs leaving discharging stations and the depot

T+ (v a1 (1 —ayy) <7} Vi EP,Vi €V,Vu € X

[C5]: Ensure that each customer node is visited within its time window

ei.Za}‘jST}‘Sli.Za}j- Vi €EK,Vu € X
JEV JEV
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Optimization Problem

[C6]: Ensure that discharge service time aligns with the grid peak demand period, if discharging stations are visited

g%-za?jﬁf?ﬁg?-zaﬁ Vi €P,Vu €X

jeEV JEV

[C7]: Ensure remaining charge (energy) feasibility for arcs leaving customers and the depot

0 <6 <6/—(H.dj).al: +Q (1 —a}t) Vi €EK,Vj €V,Vu €X,i#j

[C8]: Ensure remaining charge (energy) feasibility for arcs leaving discharging stations and the depot

0<6'<6—(H.djj+R.¥}).ai+Q(1 —aff) Vi €PVj€V,Vu €X,i#

[C9]: Ensure all customer demands are fulfilled

0< A< A —cay; —C.(1 —aff) VijEV,Vu €X
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L20 Agent Representation

------------ > State Generator < RL Agent
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find routes that minimize the trip cost of the fleet, subject to constraints
which vehicle u should be assigned to which node i ?

System decision
Routing decision :

Masking scheme for finding FEASIBLE (Vehicle -> Node) pairs @< >®

= The earliest arrival time at node j violates the time window constraint [C5, C6]

= Node j is a customer; and the current SoC of the vehicle cannot support the complete trip from node i to node j and back to the depot [C7]

= Node j is a discharging station; and the current SoC of the vehicle cannot support the complete trip from node i to node j and back to the depot;
as well as the discharge operation at node j [C8]

= Node j is a customer with unfulfilled demand that is either nil or exceeds the remaining carrying load of vehicle u [C9]
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L20 Agent Representation

Routing decision := from all feasible (u, i) pairs, which pair is the best choice?

State S, (u, i)
State Variables Normalizing Factor

b energy consumed in travelling between nodes i and j energy required to travel the
Y (proxy for distance travelled between nodes i and j) diagonal length of the graph
Z; energy spent at node i (0, if at customer; else z;)

| depo flag: indicates if vehicle u is starting from the depot

leust flag: indicates if node i is a customer -

wi wait time of vehicle u at node i before it can start service T  Decision time horizon

Action A4,(u, i)

Reward R,(u, i)

= Assign vehicleu — node i

= |f vehicle u is BUSY; perform local update
(i) remove assigned node i from the service list;
(ii) update distance and time

= |f the assighnment of all FREE vehicles is done,
perform global update and get reward
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- (A1 * bi]-) A4 =0.15 -VE reward for choosing longer route segments
+ (A, * z;) A, =0.001  +VE reward for visiting discharging station node
+ (Ag * I.yst)  A3=0.15 +VE reward for visiting customer node
— (Ay* W) A;=0.15 -VE reward for assignments that lead to waiting time

— (As* lgepo) A; =0.55 -VE reward for sending new vehicles from the depot




L20 Agent Training Algorithm

1) Initialize the neural network with weights ¢
2) Initialize batch size S, replay buffer B
3) ER <Episode> =1 :TO <Total-Num-Episodes> :DO
i.  Randomly choose data instance from training set
ii. Initialize environment
iii. [:WHILE t<T:DO
a. Create a copy of the environment for local updates
b. [:WHILE <free-vehicle> is unassigned :DO
i.  Find feasible (vehicle u, node i) pairs V u (whether free or busy)
a. :IF no feasible pairs found, then BREAK
ii. Calculate g, (u, i) = ¢(S,(u, i)) V feasible (vehicle u, node i) pairs,
regardless of the current state of each vehicle u (busy or free)
iii. Choose (u, i) pair with highest g, value (using e-greedy assignment)
| iv. Perform local update on the environment copy
Execute new (u, i) assignments in the global environment and get reward R,(u, i)

C.
| d. Add [Sy(u, i); R(w, ©); q,(u, i)] to replay buffer
iv. Delete oldest entries in B if size exceeds buffer capacity

v. Draw f samples from B
vi. Update ¢ by minimizing MSE loss between q,(u, i) and R, (u, i)
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A Representative Example for L20 Approach

t=0

@ State(Veh-1, Cus-1)
o———— P

State(Veh-1, Cus-2)

X!
A\
Veh-2 (Q=100) e 2 o >

State(Veh-2, Cus-1)
o———Pp (Veh-1, Cus-2)
\ (update GLOBAL environment IFF all free vehicles
>
State(Veh-2, Cus-2)
- p

are assigned; else update LOCAL environment copy)

Veh-1 (Q=100)

Environment:
Global Update +
Reward Collection Veh-2 (Q=75)

(Veh-2, Cus-1) @

State(Veh-1, Cus-1)
Veh-2 (Q=100)

State(Veh-1, DS-1)

State(Veh-2, Cus-1)

Veh-1 (Q=70)
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A Representative Example for L20 Approach

t=45

Veh-2 (Q=75)

State(Veh-1, DS-1)
o )
&

N
ROX

State(Veh-2, DS-1)

max (Veh-1, DS-1)
(update GLOBAL environment IFF all free vehicles
are assigned; else update LOCAL environment copy)

.
,
.
,
,
.

&

@ State(Veh-2, Cus-3)
— P

Veh-1 (Q=70)

Environment:
t=80 Global Update +
Reward Collection

(Veh-2, Cus-3)
Veh-2 (Q=60)

State(Veh-2, Cus-3)

Veh-2 (Q=75)

@

Cus-2
[10,45]

-

Battery Constrain

State(Veh-2, DS-1
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A Representative Example for L20 Approach

t=80

Veh-2 (Q=60)

Veh-1 (Q=65)

Veh-2 (Q=60

State(Veh-1, Depot)

Veh-1 (Q=65)
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State(Veh-1, Depot)

State(Veh-2, Depot)

(Veh-2, Depot)
(update GLOBAL environment IFF all free vehicles
are assigned; else update LOCAL environment copy)

Environment:

t=155

Global Update +
Reward Collection

(Veh-1, Depot)

S-1

20,75
Veh-1 (Q=65) Veh-2 (Q=60) [10,45] {



Evaluation

= |mplementation framework: PyTorch
* Training: 200 episodes (random combination of customers;
discharge stations, vehicles)
= Testing: Solomon Dataset [6-10 instances per dataset]
= Clustered (CL)
= Random (RA)
= Random Clustered (RC)

RL Training

1.00

0.95 A

0.90 A

0.85 A

0.80 A

Fulfilment ratio

0.75 A

0.70 A

= Fulfilment ratio
0.65 A — Internal Rewards

T T T T T
0 25 50 75 100 125 150 175 200
Episodes
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Neural Network Architecture

Layer # Description Neurons
1 Input Layer 5
2 FC 12
3 FC 6
4 FC 3
4 Output Layer 1

Justification

Activation Func

5 state variables -

RelLU
RelLU

RelLU

Hyperparameters

Parameter Value Parameter
Optimizer Adam  Exploration factor
Batch Size (B) 16 Exploration policy

Replay Buffer Size (B) 5000

Training Epochs

Learning Rate 0.001 per Episode

Value

Linear decay from 1 to
0 over 75 episodes

e-greedy

Min -> # customers




Evaluation

Table 4: Performance comparison on specific instances of Solomon datasets: MILP vs. GA vs. RL

DataSet | MILP.d GA_d RLd MILPv GA v RLv MILPed GA ed RI_ed MILP.t GA t RI_t |MILP cost GA cost | RL _cost
CL1m 21456 214.71 250.22 3 3 3 180 180 90 7068 68.10 3.46 268.42 26843 291.99
CL201 218.60  219.58 290.56 2 2 3 20 90 270 3029 64.81 3.52 189.06 189.10 248.81
RA105 620.44  556.81 632.62 5 5 5 40 30 20 1078 69.58 3.53 521.10 521.33 526.49
RA109 50419  460.52 634.91 4 -+ 5 40 30 30 31417 68.41 3.48 415.18 416.11 524.09
RC101 478.56  462.15  488.604 4 -+ -+ 40 30 20 2608 65.39 3.56 414.27 416.17 419.58
RC106 346.23  346.50 367.23 3 3 3 30 30 20 7308 45.01 3.42 310.25 310.26 313.47
RC102 352.65 35274 368.17 3 3 3 30 30 20 89857 43.46 3.44 310.48 310.48 313.50
RC105 465.09 41237 489.84 4 -+ -+ 40 30 20 89835 38.47 3.53 413.80 414.40 419.62

© Prasant Misra

Table shows specific instances where the MILP formulation converges within a reasonable amount of time

GA accuracy is as a good as MILP



Table 3: Performance comparison on Solomon datasets: GA vs. RL | #C: num. customers | #8: num. discharging stations |
_d: distance travelled | *_v: num. vehicles used | *_ed: energy discharged | *_t: compute time (seconds) | *_cost: M (Eq.(1))

Dataset | #C #S GA d RLd GAv RLv GA ed RL ed GA_t RLt GA_cost RL cost | GA>RL | GA_t
cost (%) | RL_t

CL1 25 | 22 3 219.47 259.54 2.56 3.22  160.00 160.00 53.55 343 228.30 284.90 19.87]|[15.61
CL2 25 | 22 3 209.58 281.73 1.75 3.00 67.50 168.75 68.62 3.50 168.86 230.5 20.74 19.6
RA1 25 | 22 3 453 R4 707 TN 4 25 A1A 22 22 AR R2 72 272 24/ 44298 498.76 11.18 )] 21.16
RA2 25 | 22 3 368.¢ Mean Optimality Gap between GA and RL: 17.23% (std. dev. 7.98%) |222.10 299.10 25 74|l 22.52
RC1 25 | 22 3 351.10 562.01 3.25 4.75 30.00 73.75 56.06 345 335.88 366.47 8.351||16.25
RC2 25 | 22 3 322.09 595.21 2.13 3.50 23.75 136.25 82.61 3.50 221.86 250.69 11.50 23.6
CL1 50 | 45 5 431.08 607.83 5.00 6.22 360.00 510.00 180.38 8.66 435.10 496.46 12.36]|] 20.83
CL2 50 | 45 5 337.15 427.51 2.00 3.38 0.00 123.75 180.83 8.82 215.56 339.57 36.52 20.5
RA1 50 | 45 5 797 Mean Optimality Gap between GA and RL: 22.38% (std. dev. 8.35%) |755.22  919.95 17.91](135.10
RAZ2 50 | 45 5 628.1v  1ubd.32 3.43 0.4/ 40.30  &UD.40 4UD.00 0.Y1 390.22 5334 26.84 ||| 45.89
RC1 50 | 45 5 718.44 1066.00 6.25 8.62 47.50 92.50 212.31 8.44 649,98 815.00 20.251( 25.16
RC2 50 | 45 5 602.01 1124.18 3.88 6.00 46.25 136.25 263.72 7.55 404.37 508.25 20.441|| 34.93
CL1 100 | 90 10 77339 1089.53 9.00 11.22 160.00 270.00 30742 3145 904.02 1068 15.35 9.78
CL2 100 | 90 10 545.19 751.99 3.00 4.50 0.00 33.75 26999 3437 324.73 461.23 29.60 7.86
RA1_100 | 90 10 1253. Mean Optimality Gap between GA and RL: 20.02% (std. dev. 6.58%) (1302.78  1564.10 16.71)|| 25.5
RA2 100 | 90 10 92522 14U5.U1 5.46 112 J9UY 17545  1460./4  35./4 568.48 715.07 20.5010|] 42.22
RC1 100 | 90 10 1438.64 2019.25 12.88 15.62 93.75 258.75 806.04 30.98 1338.50 1526.46 12.31|(] 26.03
RC2 100 | 90 10 1060.76 1636.08 6.63 9.13 92.50 233.75 102532 34.01 689.12 027.33 25.691|| 29.63

1. Accuracy: GA is better than RL by an average of 19.8% (range 8.3% - 36.52%)

2. Execution Time: RL is faster than GA by an average of 24 times © Prasant Misra



Agent-based L20 Approach to Electric Vehicle Routing Problem
with
Vehicle-to-Grid Supply and Battery Swapping

Ajay Narayanan, Prasant Misra, Ankush Ojha, Abhinav Gupta, Supratim Ghosh, and Arunchandar Vasan. 2023. Agent-based Learning Approach to Electric Vehicle Routing Problem with Vehicle-to-
Grid Supply and Battery Swapping. In Proceedings of the 6th Joint International Conference on Data Science & Management of Data (10th ACM IKDD CODS and 28th COMAD) (CODS-COMAD '23).
Association for Computing Machinery, New York, NY, USA, 185-193



Table 4: Performance comparison on Bangalore city case-study
#m: #customers | #n: #discharging stations | #o: #battery swapping stations | *_t: compute time (s) | =_c: cost M (Eq.(1))

Dataset | #m #n #o0 | H1_t H2_t GA_t Qk.t LAt Hi_c H2 ¢ GA_c Qk_c¢ LA ¢ | TA=GA GA_t
cost (%) LAt

'B'I"R_zs 25 A [ —a P Y AEN AW Ty I L T B ] EIE R TN A EN A d R RN ] NS AN TJ 2913? 28,65
1) 0, o ay o
BLR 50 | 50 Mean Optlmallty Gap between GA and RL: 18.79% (std. dev. 4.58%) 3 | | 1148 || 21.29
BLE 100 | 100 iy 3| w2 243 1UI0AT DXL DOAD | AUV S3AWIU A0YUAS DL0DYD 2vax33 2095 15.60
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Final Remarks

Summary

=  We model the electric vehicle routing problem with constraints on loading capacity; time window; vehicle-to-grid energy supply
(CEVRPTW-D) ; and formulate the multi-objective optimization problem to minimize the trip cost of the fleet.

= We design a value-based L20 algorithm by defining the (state, action) space, and engineer the reward signal for the agent to find the
cost-effective delivery routes.

= We design and implement a genetic algorithm (GA) metaheuristic to derive optimal results for CEVRPTW-D.

= Using Solomon datasets, we evaluate and compare the computation speed and solution accuracy of the proposed model against GA
and MILP.

Key Finding

Agent based L20 is 24 times faster than the GA and MILP baselines in terms of solutioning speed, but with = 20% decrease in solution quality

© Prasant Misra
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