From Drop to Data Synergizing Al/ML with Process-Based Understanding in Hydrological Sciences

Udit Bhatia, PhD Indian Institute of Technology Gandhinagar

The Water Challenge: A problem well-known but not-so-well internalized

Credit: U.S. Geological Survey, Water Science School. https://www.usgs.gov/special-topic/water-science-school Data source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources. (Numbers are rounded).

a) Water withdrawal, GDP pro-capita, and world population. b) The population of the world and selected countries of Asia and Africa. c) Graphical concept of water scarcity, resulting from a more than linear growing demand and a similarly more than a linear reduction of clean water availability. (Boretti and Rosa, 2019)

Water Quantity & Quality: 2 Sides of Same Coin

How Water Pollution in India Kills Millions

31°C 🛋		🕫 Hindustan Times						
icket	Education	NEW	India	World	Mumbai		Entertainment	
20	HT Premium	Web	Stories	Trending	Quiz	Videos	Photos	Tech

Home / India News / Floods, storms may have cost India \$7.6bn last year alone: Re...

Floods, storms may have cost India \$7.6bn last year alone: Report

INDIA TODAY

The 17 Sustainable Development Goals (SDGs): But where to start?

How dependent are the 17 SDGs on water sustainability?

THE DAVOS AGENDA 2021

If you want to make progress on all the major global challenges, start with water

WØRLD ECONOMIC FORUM

Jan 28, 2021

Madeleine Bell

Strategy & Special Projects, Desolenator

25–29 January 2021

The Davos Agenda

Clean water underpins the success or failure of every other challenge that we face.

The 17 SDGs: Clean water is the first step

Madeleine Bell

Strategy & Special Projects,

Desolenator

The Davos Agenda

The Sustainable Development Goals are all dependent, in one way or another, on clean water.

Environmental Matrix and Water

The term aqueous environmental matrix encompasses

- 1. Precipitation
- 2. Surface water
- 3. Groundwater
- 4. Drinking water
- 5. Wastewater, leachates, sediment pore water, and soil solutions.

Process Overview

Need for Hydrological Modeling

Figure : Rainfall-runoff process (unmanaged basins)

Figure : Hydrological modeling for managed basins (Image source: https://github.com/iiasa/CWatM)

Data for Hydrological Modeling

What we expect from models as Earth Scientists and Engineers?

- Interpretability
- Physical Consistency
- Preservation of complex relationship in space and time
- Reasonable predictability without compromising the interpretability

Why to Combine Physics and Data?

- + Conceptual representation of various hydrological processes
- Typically designed for specific region

Physical laws Large data requirements, parameterizations

+

_

WsW2^c W2 Laver 2 Soll Moisture, W

Process-based vs data-driven modeling lens

Function space by process-based models

Functional space by data-driven models

Bergen et al., Science (2019)

Drawing Parallels: Parameterizations in Process-based vs data-driven modeling

16

The Need and Challenges...

Challenges and limitations of existing models

- Data-driven model
- Coarser resolution of maps (which limits decision making at urban scale)
- Less representation and data
 availability of Indian cities
- Provides forecast wherever gauges are available (limited coverage)
- Doesn't account pluvial floods
- Reservoir operations are ignored

- Hydrological Core: LISFLOOD at 3' or 0.05°.
- Number of Calibration Sites: ~500 in CONUS and ~100 in India (lower number of sites and shorter duration of hydrological observations for India)
- Parameter Maps: ~100 (14 are calibrated parameters)
- Dynamic Input: ERA5 Surface Variables

Case Study-1: Lumped Physics Informed Machine Learning (PIML) model for monthly timestep (Bhasme et al., 2022)

Case Study-2: Improving the interpretability and predictive power of hydrological models: Applications for daily streamflow in managed and unmanaged catchments (Bhasme and Bhatia, 2024)

Figure: Results for semi-distributed PIML without reservoir

Figure: Results for semi-distributed PIML with reservoir

Case Study-3: Enhancing Fluvial Flood Predictions through Physics Informed Graph Neural Network

21

Case Study-4: Accounting Basin Heterogeneity - Towards Distributed Modeling

Understanding Nodes and Edges on a River Network

Understanding Nodes and Edges on a River Network

Developing Hybrid Hydrological Models

 $\begin{array}{l} \text{Graph } \mathcal{G} = (\mathcal{V}, \mathcal{E}) \\ \text{Node Features } \mathbf{h}_u \in \mathbb{R}^d, \forall u \in \mathcal{V} \\ \mathbf{h}_{\mathcal{N}(u)}^{(k)} = AGGREGATE^{(k)} \left(\mathbf{h}_v^{(k)}, \forall v \in \mathcal{N}(u) \right) \\ \mathbf{h}_u^{(k+1)} = UPDATE^{(k)} \left(COMBINE \left(\mathbf{h}_u^{(k)}, \mathbf{h}_{\mathcal{N}(u)}^{(k)} \right) \right) \\ \text{where, } k = 1, \dots, L \\ \text{Runoff } \mathbf{q}_u = ROLLOUT \left(\mathbf{h}_u^{(L)} \right) \\ \text{Streamflow } \mathbf{Q}_u = ROUTING \left(\mathbf{q}_u, \mathbf{q}_v \forall v \in \mathcal{N}(u) \right) \end{array}$

$$\begin{array}{c|c} \mathbf{i} & q_{in_t}^k = q_{out_t}^i + q_{out_t}^j \\ \mathbf{j} & q_{routed_t}^k = \frac{S_{river_t}^k + q_{in_t}^k}{(lag_{river}+1)} \\ \mathbf{k} & q_{out_t}^k = q_{routed_t}^k + runoff_t^k \\ \delta S_{river_t}^k = q_{in_t}^k - q_{routed_t}^k \\ \delta S_{river_t}^k = S_{river_t}^k + \delta S_{river_t}^k \end{array}$$

Assessing performance on an Indian Catchment

Study Area: Kantamal catchment (within Mahanadi basin)

Frequency: Monthly Spatial Resolution: 15 arcmins (0.25 degrees)

Inputs: Precipitation (IMD), PET (GLEAM), Groundwater and Soil Moisture (SIMHYD) **Outputs:** Streamflow (IndiaWRIS)

Train | Val | Test: 2000-2007 | 2008-2012 | 2013-2018

35

30

25

15

20.8 20.6 20.4

20.2

83.0 83.5 84.0 84.5

47

35

25

84.125 84.375

26

Assessing performance of catchments within one US eco-region

Study Area: 34 CAMELS (minimal human influence) Catchments in Ohio Region, US

Frequency: Monthly and Daily Spatial Resolution: 3 arcmins (0.05 degrees)

Inputs: Daymet, ERA5, Soil Composition, LULC **Outputs:** Streamflow (GloFAS)

Train | Val | Test: 1980-1999 | 2000-2009 | 2009-2020

Training on data-rich basins...

Study Area: 493 CAMELS (minimal human influence) Catchments in Continental US

Frequency: Monthly Spatial Resolution: 3 arcmins (0.05 degrees)

Inputs: ERA5, Soil Composition, LULC Outputs: Streamflow (GloFAS)

Train | Test: 1999-2008 | 1989-1999

100

- 75

50

25

· 0

-25

-50

-75

-100

Median PBIAS

Testing on ungauged/basins

Study Area: 144 IndiaWRIS Gauges (>100 km2) Catchments in Indian mainland Basins

Frequency: Monthly Spatial Resolution: 3 arcmins (0.05 degrees)

Inputs: ERA5, Soil Composition, LULC Outputs: Streamflow (GloFAS)

Train | Test: 1999-2008 | 1989-1999

The Opportunities...

Data quality and availability

Figure: Global distribution of stream gauges (red crosses; N = 32,091) along the river network (blue) identified by GRADES. (Krabbenhoft et al., 2022)

Figure: Streamflow output at outlet while inputs are at 0.25° degree resolution

Figure: Streamflow output at all pixels when inputs are at 0.05⁰ degree resolution

Integration of satellite products

Citizen Science

2015

Need of higher resolution datasets for better modeling

Figure: Data-information-knowledge-behaviour-action workflow characterizing citizen science projects for hydrological sciences. (Nardi et al., 2022)

floodResQ at Glance

Side-effects of Adaptation

Kumar et al. (2025)

Flood beyond water

The Unmet Water Challenge: Dominance of Human Factors

Most of the largest rivers worldwide are managed but models do not handle human factors well

Only 37% of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23% flow uninterrupted to the ocean.

A Vision for Integrated Physics and Machine Learning in Hydrology Models

Key Contributors

Dr. Pravin Bhasme Hydrological modeling, Physics informed machine learning

Sarth Dubey Graph Neural Networks, Physics-Guided ML

References

- Boretti, A. and Rosa, L., 2019. Reassessing the projections of the world water development report. *NPJ Clean Water*, 2(1), p.15.
- Krabbenhoft, C.A., Allen, G.H., Lin, P., Godsey, S.E., Allen, D.C., Burrows, R.M., DelVecchia, A.G., Fritz, K.M., Shanafield, M., Burgin, A.J. and Zimmer, M.A., 2022. Assessing placement bias of the global river gauge network. *Nature Sustainability*, *5*(7), pp.586-592.
- Chen, S., Zwart, J.A. and Jia, X., 2022, August. Physics-guided graph meta learning for predicting water temperature and streamflow in stream networks. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining* (pp. 2752-2761).
- Bhasme, P., Vagadiya, J. and Bhatia, U., 2022. Enhancing predictive skills in physically-consistent way: Physics Informed Machine Learning for hydrological processes. *Journal of Hydrology*, 615, p.128618.
- Bhasme, P. and **Bhatia**, **U.**, 2024. Improving the interpretability and predictive power of hydrological models: Applications for daily streamflow in managed and unmanaged catchments. *Journal of Hydrology*, 628, p.130421.
- Thomas, H.A., 1981. Improved Methods for National Water Assessment. Report WR15249270, US Water Resource Council, Washington, DC
- Chiew, F., Peel, M., Western, A., et al., 2002. Application and testing of the simple rainfall-runoff model SIMHYD. In: Mathematical Models of Small Watershed Hydrology and Applications. Water Resources Publications, pp. 335–367.
- Nardi, F., Cudennec, C., Abrate, T., Allouch, C., Annis, A., Assumpcao, T., Aubert, A.H., Berod, D., Braccini, A.M., Buytaert, W. and Dasgupta, A., 2022. Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. *Hydrological Sciences Journal*, 67(16), pp.2534-2551.