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The Water Challenge: A problem well-known but not-so-well internalized

2

a) Water withdrawal, GDP pro-capita, and world population. b) The population of the world 
and selected countries of Asia and Africa. c) Graphical concept of water scarcity, resulting 
from a more than linear growing demand and a similarly more than a linear reduction of 
clean water availability. (Boretti and Rosa, 2019)



Water Quantity & Quality: 2 Sides of Same Coin
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The 17 Sustainable Development Goals (SDGs): But where to start?
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How dependent are the 17 SDGs on water sustainability?
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The 17 SDGs: Clean water is the first step
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Environmental Matrix and Water
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The term aqueous environmental matrix 
encompasses

1.  Precipitation
2.  Surface water
3.  Groundwater
4. Drinking water
5. Wastewater, leachates, sediment 

pore water, and soil solutions. 



Process Overview
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Rainfall-
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Discharge Flood 
InundationRainfall

Catchment Characteristics
● Elevation
● Flow Direction
● Soil Composition
● Land Use Land Cover
● Soil Moisture
● Groundwater

Water Level / 
Stage
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Need for Hydrological Modeling
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resources 
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side
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systems

Tool

Figure : Rainfall-runoff process (unmanaged basins)

Figure : Hydrological modeling for managed basins 
(Image source: https://github.com/iiasa/CWatM)



Data for Hydrological Modeling
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Meteorological data Hydrological data

Topographical data

Other data

Precipitation Temperature

Wind speed Evaporation

Digital Elevation Model Land Use Land Cover

Soil types and properties

Streamflow and stage (depth) Reservoir inflows, outflows, storage 
and water level

Historical flood extents

Water demands

Drinking water Irrigation Industrial Hydropower

Water quality parameters



What we expect from models as Earth Scientists and Engineers?
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● Interpretability
● Physical Consistency
● Preservation of complex relationship in space and time
● Reasonable predictability without compromising the interpretability

Interpretability Physical Consistency Complexity



Why to Combine Physics and Data?
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Hydrological models

Data driven models Conceptual models Physically-based 
models

+ Better predictive skills
- No physical laws 

+ Conceptual representation of 
various hydrological processes

- Typically designed for specific 
region

+ Physical laws
- Large data requirements,

parameterizations



Process-based vs data-driven modeling lens
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Bergen et al., Science (2019)

Karniadakis et al., Nature (2021)

Karpatne et al., IEEE (2017)



Function space by process-based models

14

Bergen et al., Science (2019)Peng et al., JHM (2016)



Functional space by data-driven models
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Bergen et al., Science (2019)



Drawing Parallels: Parameterizations in Process-based vs data-driven modeling 
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Process-based Modeling Data-driven Modeling



The Need and Challenges…
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Reichstein et al., Nature (2019)

● Interpretability

● Physical Consistency

● Limited Labels

● Computationally Demanding

● Preservation of complex 

relationship in space and time

Reichstein et al., Nature (2019)

Jiang et al., GRL (2020)



Challenges and limitations of existing models
● Data-driven model
● Coarser resolution of maps (which 

limits decision making at urban scale)
● Less representation and data 

availability  of Indian cities
● Provides forecast wherever gauges 

are available (limited coverage)
● Doesn’t account pluvial floods
● Reservoir operations are ignored 
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● Hydrological Core: LISFLOOD at 3’ or 
0.05o.

● Number of Calibration Sites: ~500 in 
CONUS and ~100 in India (lower 
number of sites and shorter duration 
of hydrological observations for India)

● Parameter Maps: ~100 (14 are 
calibrated parameters)

● Dynamic Input: ERA5 Surface 
Variables



Case Study-1: Lumped Physics Informed Machine Learning (PIML) model for monthly timestep 
(Bhasme et al., 2022)
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Figure: Study area 
(Ten subcatchments 
from peninsular India)

Figure: (a)The abcd model 
(Thomas et al., 1981); (b) 
Data-driven model; (c) PIML 
model; (d) PIML model 
framework 
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Figure: Results for 
actual 
evapotranspiration 
(ET) predictions

Figure: Results 
for streamflow 
(Q) predictions



Case Study-2: Improving the interpretability and predictive power of hydrological models: 
Applications for daily streamflow in managed and unmanaged catchments (Bhasme and Bhatia, 2024)
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Figure: Study area (a) Semi-distributed 
PIML model without reservoir; (b) 
Semi-distributed PIML model with 
reservoir 

Figure: (a) The SIMHYD model (Chiew et al., 
2002); (b) Lumped PIML model; (c) 
Semi-distributed PIML model without 
reservoir; (d) Semi-distributed PIML model 
with reservoir 
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Figure: Results for semi-distributed PIML without reservoir Figure: Results for semi-distributed PIML with reservoir



Case Study-3: Enhancing Fluvial Flood Predictions through Physics Informed Graph Neural 
Network
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Figure: Distributed PIML for fluvial flood prediction

Figure: Study area for distributed PIML 
model for fluvial flood prediction 

Figure: Performance of distributed PIML model (Network is based on the GloFAS 
Local Drain Direction datasets)

Table: Preliminary results (in %) 
for flood extent mapping for 9th 

and 21st August 2018 flood events



Case Study-4: Accounting Basin Heterogeneity - Towards Distributed Modeling 
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Understanding Nodes and Edges on a River Network

Muskingum Cunge

Kinematic Wave
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3. IMD (India) / 

Daymet (US)

Dynamic Variables

1. Elevation
2. Upstream Area
3. Soil properties
4. LULC

Static Variables

Data-driven
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SIMHYD

Lisflood



Understanding Nodes and Edges on a River Network
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Developing Hybrid Hydrological Models
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Assessing performance on an Indian Catchment

Study Area: Kantamal catchment (within Mahanadi basin)

Frequency: Monthly
Spatial Resolution: 15 arcmins (0.25 degrees)

Inputs: Precipitation (IMD), PET (GLEAM), Groundwater and Soil Moisture (SIMHYD)
Outputs: Streamflow (IndiaWRIS)

Train | Val | Test: 2000-2007 | 2008-2012 | 2013-2018
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Assessing performance of catchments within one US eco-region

Study Area: 34 CAMELS (minimal human influence) 
Catchments in Ohio Region, US

Frequency: Monthly and Daily
Spatial Resolution: 3 arcmins (0.05 degrees)

Inputs: Daymet, ERA5, Soil Composition, LULC
Outputs: Streamflow (GloFAS)

Train | Val | Test: 1980-1999 | 2000-2009 | 2009-2020
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Training on data-rich basins…

Study Area: 493 CAMELS 
(minimal human influence) 
Catchments in Continental US

Frequency: Monthly
Spatial Resolution: 3 arcmins 
(0.05 degrees)

Inputs: ERA5, Soil Composition, 
LULC
Outputs: Streamflow (GloFAS)

Train | Test: 1999-2008 | 1989-1999
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Testing on ungauged/basins

Study Area: 144 IndiaWRIS Gauges (>100 km2) 
Catchments in Indian mainland Basins

Frequency: Monthly
Spatial Resolution: 3 arcmins (0.05 degrees)

Inputs: ERA5, Soil Composition, LULC
Outputs: Streamflow (GloFAS)

Train | Test: 1999-2008 | 1989-1999
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The Opportunities…
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Figure: Global distribution of stream gauges (red crosses; 
N = 32,091) along the river network (blue) identified by 
GRADES. (Krabbenhoft et al., 2022)

Data quality and availability Need of higher resolution datasets for better modeling

Integration of satellite products

Figure: Streamflow output at outlet while inputs are 
at 0.250 degree resolution

Figure: Streamflow output at all pixels 
when inputs are at 0.050 degree 
resolution

Citizen Science

Figure: Data–information–knowledge–behaviour–action workflow characterizing citizen 
science projects for hydrological sciences. (Nardi et al., 2022)



Deep Learning based emulator for urban 
flooding simulation

Process-based model for urban flooding simulation

Boundary 
conditions

(Wang et al., 2019)

(Figure Source: 
https://cs231n.github.io/neural-networks-1/)

PIML

Flood risk maps
Critical Infrastructure network

Impact

Damage quantification

Recovery strategies for 
resilient infrastructure system

Decision support 
system

(Bhatia et al., 2015)

(Dave et al., 2021)source:https://developer.nvidia.com/blog/simul
ating-real-world-floods-on-gpus/

HydroGNN

floodResQ  at Glance



Side-effects of Adaptation
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Kumar et al. (2025) 



Flood beyond water



The Unmet Water Challenge: Dominance of Human Factors
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Figure : Map of the world’s free flowing rivers
(Grill, G., Lehner, B., Thieme, M. et al. Mapping the world’s free-flowing rivers. Nature 

569, 215–221 (2019). https://doi.org/10.1038/s41586-019-1111-9)

Only 37% of rivers longer than 1,000 
kilometres remain free-flowing over 

their entire length and 23% flow 
uninterrupted to the ocean.

Most of the largest rivers worldwide 
are managed but models do not 

handle human factors well



A Vision for Integrated Physics and Machine Learning in Hydrology Models
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Key Contributors
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