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ABSTRACT
Non-intrusive load monitoring (NILM) or energy disaggregation
is the task of separating the household energy measured at the ag-
gregate level into constituent appliances. In 2014, the NILM toolkit
(NILMTK) was introduced in an effort towards making NILM re-
search reproducible. Despite serving as the reference library for
data set parsers and reference benchmark algorithm implementa-
tions, few publications presenting algorithmic contributions within
the field went on to contribute implementations back to the toolkit.
This paper describes two significant contributions to the NILM
community in an effort towards reproducible state-of-the-art re-
search: i) a rewrite of the disaggregation API and a new experiment
API which lower the barrier to entry for algorithm developers and
simplify the definition of algorithm comparison experiments, and
ii) the release of NILMTK-contrib; a new repository containing
NILMTK-compatible implementations of 3 benchmarks and 9 re-
cent disaggregation algorithms. We have performed an extensive
empirical evaluation using a number of publicly available data sets
across three important experiment scenarios to showcase the ease
of performing reproducible research in NILMTK.
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1 INTRODUCTION
Non-intrusive load monitoring (NILM) or energy disaggregation is
the task of separating a building’s energy measured at the aggregate
level into constituent appliances. The problem was originally stud-
ied by Hart in the early 1980s [9] and has seen a renewed interest
in recent years owing to the availability of larger data sets, smart
meter rollouts, and amidst climate change concerns.

Despite more than three decades of research in the field, three
factors primarily affected reproducibility, and therefore empirical
comparison of NILM algorithms: i) it was hard to assess generality
of NILM approaches as most works were evaluated on a single
data set, ii) there was lack of comparison using the same bench-
marks due to the lack of availability of open-source benchmark
implementations, and iii) different metrics were used based on the
use case under consideration. The open source non-intrusive load
monitoring toolkit (NILMTK) [3] was released in early 2014 against
this background to enable easy comparison of NILM algorithms in
a reproducible fashion. The main contributions of the toolkit were:
i) NILMTK-DF (data format): the standard energy disaggregation
data structure used by NILMTK; ii) parsers for six existing data
sets; iii) implementations of two benchmark NILM algorithms; iv)
statistical and diagnostic functions for understanding data sets;
v) a suite of accuracy metrics across a range of use cases. Later
in 2014, NILMTK v0.2 was released [12] which added support for
out-of-core computation, motivated by release of very large data
sets such as Dataport data set [18].

Since these two releases, NILMTK has become the energy disag-
gregation field’s reference library for data set parsers and reference
benchmark algorithm implementations. However, few publications
presenting algorithmic contributions within the field went on to
contribute implementations back to the toolkit. As a result, new
publications generally compare a novel algorithm with a baseline
benchmark algorithm instead of the state-of-the-art within the field.
Consequently, it is still not possible to compare the performance of
state-of-the-art algorithms side-by-side, therefore limiting progress
within the field.
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Against this background, this paper describes two significant
contributions to the NILM research community. First, we have
rewritten the disaggregation API and implemented a new exper-
iment API, which respectively lowers the barrier to entry for al-
gorithm developers and simplify the definition of algorithm com-
parison experiments. We have also made a number of practical
improvements to the toolkit’s installation process, data set parsers
and documentation. Second, we have released NILMTK-contrib1; a
new repository containing NILMTK-compatible implementations
of three benchmarks and nine recently published disaggregation
algorithms [13, 14, 16, 21, 22]. For the first time, algorithm devel-
opers will be able to compare the performance of a new approach
with state-of-the-art algorithms in a range of different settings.

To demonstrate the potential of these releases, we have per-
formed an extensive empirical evaluation using a number of pub-
licly available data sets. We demonstrate the versatility of the new
experiment API by conducting experiments across the following
three train/test scenarios: i) train and test on a different build-
ing from the same data set, ii) train on multiple buildings from
different data sets and iii) train and test on artificially generated
aggregate data (by summing appliance usage rather than measur-
ing the building aggregate). Furthermore, we demonstrate the po-
tential of NILMTK-contrib by comparing the performance of the
three benchmarks and nine disaggregation algorithms included
in NILMTK-contrib in each of these settings. This evaluation is
the most extensive empirical comparison of energy disaggregation
algorithms to date. However, we have only evaluated algorithm
performance using a single accuracy metric, and although many
metrics are available within NILMTK, a comparison across multiple
metrics is beyond the scope of this paper.

This represents a significant release of NILMTK and addresses a
key issue faced by the community, as evidenced by GitHub issue
queue. With this release, we believe that we have lowered the
barrier to entry for the NILM community to embrace reproducible
research. In addition, we believe that this release will also pave the
way for future NILM competitions.

The remainder of this paper is structured as follows. First, we
formally introduce the energy disaggregation problem and discuss
the issues with existing toolkit. We then describe changes to the
core toolkit, including updates to the experiment API and the new
model interface. Next, we introduce the NILMTK-contrib reposi-
tory and provide an overview for the supported algorithms. We
then demonstrate the value of such releases through an empirical
comparison, before summarising our contributions.

2 BACKGROUND
In this section, we introduce the mathematical definition of energy
disaggregation and provide an overview of the NILM research field,
before summarising NILMTK and discussing its current limitations.

2.1 The NILM Model
Suppose we have observed a time series of aggregate measure-
ments Y = (Y1,Y2, · · · ,YT ), where Yt ∈ R+ represents the energy
or power measured in Watt-hours or Watts by an electricity meter

1https://github.com/nilmtk/nilmtk-contrib

at time t . This signal is assumed to be the aggregation of energy con-
sumed by the component appliances in a building. In the following,
we assume there are I appliances, and for each appliance the energy
signal is represented as Xi = (xi1,xi2, · · · ,xiT ) where xit ∈ R+.
The mains readings can then be represented as the summation of
the appliance signals with the following form: Yt =

∑I
i=1 xit + ϵt

where ϵt is an error term. The aim of the energy disaggregation
problem, i.e., NILM, is to recover the unknown signals Xi given
only the observed aggregate measurements Y .

2.2 Overview of NILM Research
The field of NILM was introduced by George Hart in the early
1980s [9]. In the past decade, research in the field has accelerated
due to smart meter rollouts across different countries and the efforts
towards emission reduction. The availability of public data sets
(more than 10 across different geographies) in recent years has also
generated significant research activity.

Various algorithms have been proposed for solving NILM since
the inception of the field. These mainly include signal processing
methods that use explicit features of appliances for the purpose of
disaggregation [10, 11], and machine learning approaches includ-
ing, unsupervised and supervised learning. Many methods [15, 19,
22, 23] used probabilistic approaches to explicitly model appliances’
energy consumption via a hidden Markov model (HMM). Another
category of methods [2, 5, 14] leverage the low-rank structure of
energy consumption to perform energy disaggregation using fac-
torisation techniques. Furthermore, the success of neural networks
in other domains has spurred innovation in NILM as evidenced
by recent deep learning methods [13, 16, 21]. Most of the methods
described above work well for sampling rates of 1Hz to 1/600 Hz
(a reading every 10 minutes). However, there is also a significant
amount of work [6, 7, 17] in the NILM literature leveraging power
data collected at much higher frequencies.

Despite this recent interest in NILM, it remained virtually impos-
sible to empirically compare NILM research and truly understand
the state of the art. Three factors primarily affected reproducibility
and prevented empirical comparison of NILM algorithms. First, it
was hard to assess the generality of NILM approaches as most work
was evaluated on a single data set, and furthermore, researchers
would often sub-sample data sets to select specific households,
appliances and time periods, making experimental results more
difficult to reproduce. Second, there was a lack of comparison using
the same benchmarks, which was primarily due to the lack of avail-
ability of open source benchmark implementations. Thus, most
research papers compared their work against variants of their main
algorithms or trivial baseline algorithms. Third, a large number
of metrics were used based on the use case under consideration,
making it practically impossible to determine the state-of-the-art.

2.3 NILMTK
The open source non-intrusive loadmonitoring toolkit (NILMTK) [3]
was released in early 2014 to enable easy comparison of NILM al-
gorithms in a reproducible fashion. The main contributions of the
toolkit were: i) NILMTK-DF (data format): the standard energy
disaggregation data structure used by NILMTK; ii) parsers for six
existing data sets (REDD, SMART*, AMPds, UK-DALE, iAWE and

https://github.com/nilmtk/nilmtk-contrib
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PecanStreet data set); iii) implementations of two benchmark NILM
algorithms (combinatorial optimization and exact factorial hidden
Markov model); iv) statistical and diagnostic functions for under-
standing data sets; v) a suite of accuracy metrics across a range
of use cases. Later in 2014, motivated by the release of large data
sets such as Dataport data set [18], NILMTK v0.2 was released [12],
which was a major rewrite of the toolkit specifically designed to
support out-of-core computation.

Since its release, NILMTK has become the energy disaggregation
field’s reference library for data set parsers and reference bench-
mark algorithm implementations. The GitHub repository2 has been
starred by 385 people, forked 243 times, is cloned roughly 20 times
a day and has an average of 600 page views every day from roughly
100 unique users. The toolkit was also awarded the best demonstra-
tion award at ACM BuildSys 2014.

However, few publications presenting algorithmic contributions
within the field of energy disaggregation subsequently contributed
implementations back to NILMTK. This is likely due to the require-
ment for algorithm authors to understand internal concepts of the
toolkit, such as the ElecMeter and MeterGroup objects and their
associated methods. Furthermore, the disaggregator interface itself
has become overly complex with the support for out-of-core disag-
gregation. As a result of the lack of availability of such algorithm
implementations, it still remains a major challenge to reproduce
the results of recent contributions in the field and determine which
algorithms represent the state of the art in different scenarios.

More recently, Kelly et al. conducted a survey3 in an effort to
design a competition for energy disaggregation algorithms. The
insights gathered were useful not only in designing such a contest,
but also analysing the current needs of the community. The survey
responses were submitted by a diverse range of NILM enthusiasts.
While the community has shown a lot of interest in a NILM compe-
tition, the learning curve was too high to integrate new algorithms
into NILMTK, further supporting the above assertions. Clearly, sig-
nificant improvements to the toolkit are required to support and
measure progress within the NILM research field.

3 IMPROVEMENTS TO NILMTK
In this section we first describe two core changes made to NILMTK;
namely a new experiment interface and a rewrite of the model inter-
face. We then go on to summarise the user-raised issues that have
been addressed since the release of NILMTK v0.2, and also describe
a number of practical improvements to the toolkit’s installation
process, data set parsers and documentation.

3.1 Experiment Interface
We have introduced ExperimentAPI; a new NILMTK interface
which reduces the barrier-to-entry for specifying experiments for
NILM research. This allows NILMTK users to focus on which ex-
periments to run rather than on the code required to run such
experiments. Our new interface is inspired by declarative visuali-
sation library Vega-Lite.4 Declarative syntax decouples what we
want to do from how we do it (the latter being imperative style).

2https://github.com/nilmtk/nilmtk/
3http://jack-kelly.com/a_competition_for_energy_disaggregation_algorithms
4https://vega.github.io/vega-lite/

1 experiment = {
2 'power ': {'mains ': ['active '], 'appliance ': ['active ']},
3 'sample_rate ': 60, 'artificial_aggregate ':False ,
4 'appliances ': ['fridge ', 'washing machine '],
5 'methods ': {'CO': {},
6 'FHMM_EXACT ': {'num_of_states ': 2},
7 'Seq2Point ': {
8 'n_epochs ': 1,
9 'pre -processing ': {
10 'appliance_params ': {
11 'washing machine ': {
12 'mean': 400,'std': 700},
13 'fridge ': {
14 'mean': 200,'std': 400 },
15 }
16 },
17 }
18 },
19 'train ': {
20 'datasets ': {
21 'REDD': {
22 'path': '/data/REDD/redd.h5',
23 'buildings ': {
24 1: {'start_time ': '2011 -04 -01','end_time ': '2011 -04 -30'},
25 2: {'start_time ': '2011 -04 -01','end_time ': '2011 -04 -30'}
26 }
27 }
28 }
29 },
30 'test': {
31 'datasets ': {
32 'IAWE': {
33 'path': '/data/IAWE/iawe.h5',
34 'buildings ': {
35 1: {'start_time ': '2015 -08 -05','end_time ': '2015 -08 -10'}
36 }
37 }
38 },
39 'metrics ': ['mae', 'rmse']
40 }
41 }

Listing 1: ExperimentAPI: Simplifying the definition of
algorithm comparison experiments

Listing 1 shows the new experiment interface implemented in
NILMTK. This interface aims to encapsulate the parameters re-
quired for training and testing over data sets using NILMTK. Pre-
viously, these parameters were spread across multiple NILMTK
modules and toolkit users had to be considerate about providing
the right training and testing parameters during the respective
function calls. The listing describes an experiment where:
• mains and appliances use active power (L2).
• with a sampling rate of 60 seconds and not using artificial aggre-
gate, i.e. using true aggregate reading (L3).

• for appliances: fridge and washing machine (L4).
• three algorithms are used for disaggregation (CO, FHMM and
Seq2Point – L5, 6, 7 respectively) and their corresponding param-
eters are specified (L6 for FHMM and L8-14 for Seq2Point).

• training parameters are specified on L19-29, where the different
training data sets are specified: REDD data set specified from
L21-26, where the path for the data set is specified in L22 and the
start and end time for building number 1 and 2 are specified in
L24 and 25.

• the test parameters are added in a similar format to the training
parameters from L31-38.

• the set of evaluation metrics are on L39.
The newAPI drastically reduces the workload for the toolkit user.

As an example, for the experiment described in Listing 1, the previ-
ous version of NILMTK (which was imperative in design) required
the users to iterate over chunks of data across different buildings
and across different datasets, then combine the predictions across
these individual chunks and pass them through the interface for
metrics. Not only was the previous interface more time consum-
ing; but, also more error prone. Besides, the end-user had to gain
sufficient familiarity with NILMTK specific data structures

https://github.com/nilmtk/nilmtk/
http://jack-kelly.com/a_competition_for_energy_disaggregation_algorithms
https://vega.github.io/vega-lite/


BuildSys, November 13-14, 2019, Columbia University, New York Batra et al.

1 class Disaggregator(object):
2 def train(self , metergroup):
3 """ Parameters
4 ----------
5 metergroup : a nilmtk.MeterGroup object
6 """
7 raise NotImplementedError ()
8
9 def train_on_chunk(self , chunk , meter):
10 """ Parameters
11 ----------
12 chunk : pd.DataFrame where each column represents a
13 disaggregated appliance
14 meter : ElecMeter for this chunk
15 """
16 raise NotImplementedError ()
17
18 def disaggregate(self , mains , output_datastore):
19 """ Parameters
20 ----------
21 mains : nilmtk.ElecMeter (single -phase) or
22 nilmtk.MeterGroup (multi -phase)
23 output_datastore : instance of nilmtk.DataStore or str of
24 datastore location
25 """
26 raise NotImplementedError ()
27
28 def disaggregate_chunk(self , mains):
29 """ Parameters
30 ----------
31 mains : pd.DataFrame
32
33 Returns
34 -------
35 appliances : pd.DataFrame where each column represents a
36 disaggregated appliance
37 """
38 raise NotImplementedError ()
39
40
41 def _save_metadata_for_disaggregation(self , output_datastore ,
42 sample_period , measurement ,
43 timeframes , building ,
44 meters=None , num_meters=None ,
45 supervised=True):
46 """ Parameters
47 ----------
48 output_datastore : nilmtk.DataStore subclass object
49 The datastore to write metadata into.
50 sample_period : int
51 The sample period , in seconds , used for both the
52 mains and the disaggregated appliance estimates.
53 measurement : 2-tuple of strings
54 In the form (<physical_quantity >, <type >) e.g.
55 ("power", "active ")
56 timeframes : list of nilmtk.TimeFrames or nilmtk.TimeFrameGroup
57 The TimeFrames over which this data is valid for.
58 building : int
59 The building instance number (starting from 1)
60 supervised : bool , defaults to True
61 Is this a supervised NILM algorithm?
62 meters : list of nilmtk.ElecMeters , optional
63 Required if `supervised=True `
64 num_meters : int
65 Required if `supervised=False `
66 """

Listing 2: The old Model Interface in NILMTK required
interfacing with NILMTK intricacies

It is important to note that handing over so much flexibility to
the user does require the user to be somewhat familiar with the data
set, but this part of the process is supported by NILMTK as data
exploration is simple and well documented. We make extensive use
of the ExperimentAPI for our empirical evaluations in Section 5.

3.2 Model Interface

Previously, the disaggregator class (Listing 2) required intricate
knowledge of NILMTK objects such as ElecMeter and MeterGroup
as used in functions at L2, L9, L18, L28, L41. This dependence on
knowledge of NILMTK’s internal implementation proved to be a
barrier for community algorithm authors.

The new Model Interface (Listing 3) eliminates the dependence
on NILMTK objects. The class definition has been simplified in
terms of input and output formats and is consistent throughout
the new API, but also all of the new functions in L2, L12 and L20

1 class Disaggregator(object):
2 def partial_fit(self , train_mains ,
3 train_appliances , ** load_kwargs):
4 """
5 Parameters
6 ----------
7 train_main: list of pd.DataFrames with pd.DatetimeIndex as index and 1 or

↪→ more power columns
8 train_appliances: list of (appliance_name , list of pd.DataFrames) with the

↪→ same pd.DatetimeIndex as index as train_main and the same 1 or more
↪→ power columns as train_main

9 """
10 raise NotImplementedError ()
11
12 def disaggregate_chunk(self , test_mains):
13 """
14 Parameters
15 ----------
16 test_mains : list of pd.DataFrames
17 """
18 raise NotImplementedError ()
19
20 def call_preprocessing(self , train_mains ,
21 train_appliances):
22 """
23 Parameters
24 ----------
25 train_main: list of pd.DataFrames with pd.DatetimeIndex as index and 1 or

↪→ more power columns
26 train_appliances: list of (appliance_name , list of pd.DataFrames) with the

↪→ same pd.DatetimeIndex as index as train_main and the same 1 or more
↪→ power columns as train_mains

27 """
28 return train_mains , train_appliances

Listing 3: The new Model Interface in NILMTK requires
only the Python data science ecosystem

are independent of NILMTK objects. The algorithm developer only
needs to know the PyData stack (pandas, numpy, scikit-learn)
to be able to write new algorithms for NILMTK. The new interface
also decouples the training and loading of data, and the user only
has to handle a chunk of data loaded by the API according to
the parameters specified by the user. Only two new functions are
mandatory for implementation:
(1) partial_fit: The training method that is called repeatedly

over new chunks of data and keeps on fitting the new data and
improving the model.

(2) disaggregate_chunk: The disaggregationmethod that receives
aggregate test data which it disaggregates into predicted con-
stituent appliances and returns the predictions.

The call_preprocessing method is optional and is specific to
algorithms requiring preprocessing. It was added to address the time
consuming preprocessing required by neural network models. It
allows users to store their preprocessed data in an HDF5-formatted
file. Users do not need to repeatedly preprocess the same data, since
the data can be loaded from the saved file.

We now explain the design of the input data structures in the
newly introduced Model Interface. These were carefully designed
after extensive discussions with community members to meet the
requirements of benchmark and modern NILM algorithms. We
define the following two terms to explain the data structure:
Chunk: A contiguous portion of time-series indexed power data
that fits in memory. Users can specify the chunk size depending on
their system memory.
Window: A portion of a chunk on which the model trains in one
iteration. The concept of a window is akin to a sequence in which
various features are extracted in traditional machine learning algo-
rithms (such as mean, median). The windows could be rolling (with
or without overlap) or be completely dis-contiguous. Each window
of data is a DataFrame (like the chunk it is derived from) which
contains a timeseries index and various power features as columns.
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1 class Mean(Disaggregator):
2 def __init__(self , model_parameters):
3 self.model = {}
4 self.MODEL_NAME = 'Mean'
5 self.save_model_path = model_parameters.get('save -model -path',None)
6 self.load_model_path = model_parameters.get('pretrained -model -path',None

↪→ )
7 self.chunk_wise_training = model_parameters.get('chunk_wise_training ',

↪→ True)
8 if self.load_model_path:
9 self.load_model(self.load_model_path)
10
11 def partial_fit(self , train_main , train_appliances , ** load_kwargs):
12 train_main = pd.concat(train_main ,axis =0)
13 for appliance_name , power in train_appliances:
14 power_ = pd.concat(power ,axis =0)
15 appliance_dict = self.model.get(appliance_name ,{'sum':0,'n_elem ':0})
16 appliance_dict['sum']+=int(np.nansum(power_.values))
17 appliance_dict['n_elem ']+=len(power_ [~np.isnan(power_)])
18 self.model[appliance_name] = appliance_dict
19 if self.save_model_path:
20 self.save_model(self.save_model_path)
21
22 def disaggregate_chunk(self , test_mains):
23 test_predictions_list = []
24 for test_df in test_mains:
25 appliance_powers = pd.DataFrame ()
26 for i, appliance_name in enumerate(self.model):
27 model = self.model[appliance_name]
28 predicted_power = [model['sum']/model['n_elem '] for j in range

↪→ (0, test_df.shape [0])]
29 appliance_powers[appliance_name] = pd.Series(predicted_power ,

↪→ index=test_df.index , name=i)
30 test_predictions_list.append(appliance_powers)
31 return test_predictions_list
32
33 def save_model(self ,folder_name):
34 string_to_save = json.dumps(self.model)
35 os.makedirs(folder_name , exist_ok=True)
36 with open(os.path.join(folder_name ,"model.txt","w")) as f:
37 f.write(string_to_save)
38
39 def load_model(self ,folder_name):
40 with open(os.path.join(folder_name ,"model.txt","r")) as f:
41 model_string = f.read().strip()
42 self.model = json.loads(model_string)

Listing 4: Model Interface definition for the Mean baseline
in NILMTK

The input to the Model Interface is a list of mains windows
and a list of appliance windows. Traditional algorithms like FHMM
would have a single window (equal to the chunk length), whereas
newer neural algorithms like Seq2Point would consider overlapping
windows (with a time difference of 1 sample) of much smaller length
than the chunk size.

We now illustrate the ease of writing a new algorithm using the
new Model Interface in Listing 4. We discuss what we refer to
as the mean algorithm (refer to Section 4.1 for more details about
this algorithm). The main idea of the algorithm is that for each
appliance we estimate its mean usage from the training set and
predict the same mean usage for the test set, irrespective of the
observed aggregate. We now discuss the listing:
• L5-L7: show the parameters that can be specified as input to the
algorithm: where to save or load the model from.

• L13-L18: update the appliance-wise sum and total length ob-
served in an online fashion.

• L26-30: take a mains dataframe as input and outputs an appliance-
wise usage dataframe based on stored mean.

• L33-37 (optional): saves the model after the training process.
• L39-42 (optional): load a pre-trained model.
As it can be seen from the listing, writing a new algorithm in
NILMTK now does not require knowledge of NILMTK internals.

3.2.1 Preprocessing. This release supports data preprocessing by
providing 3 important features in the experiment API and the model
interface: (a) allowing users to specify the preprocessing parameters
of the algorithm (Listing 1, L9-L16), (b) providing a common data

structure to handle changes made to the dataframe shapes during
preprocessing, which are consistent throughout the methods in List-
ing 3, and (c) allowing the user to store and load the preprocessed
data for individual methods (Listing 1, L5). All of these additions
to the interface collectively allow users to include preprocessing
methods such as mean centering, standardisation, min-max scaling,
etc. The call_preprocessing method (Listing 3, L20) acts as an
interface for handling the preprocessed dataframes and function
calls to the individual preprocessing methods inside each algorithm.

3.3 Practical Improvements to NILMTK
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Figure 1: Types of issues on NILMTK’s GitHub repository

The NILMTK GitHub issue queue totals at 727 issues, whose dis-
tribution is shown in Figure 1. The issues have been categorised as
shown with some issues appearing in multiple categories. Most of
the issues have been fixed and the documentation has improved sig-
nificantly. Addressing these issues and improving NILMTK involved
work from 21 contributors. 1700+ commits and 72 pull requests
later, 617 issues have been closed as of now. We now discuss our
efforts towards some of the issue categories.

3.3.1 Easier installation: Installation issues have been popping up
at regular intervals ever since NILMTK gained widespread usage
in the community. A total of 49 issues (Figure 1) were directly re-
lated to installation. The installation procedure required the user
and developers to clone the nilmtk and nilm_metadata reposi-
tories, setup the environment using the YAML file provided and
then run the setup.py files manually, in a specific sequence, for
the process to complete. The process varied across platforms, and
the installation on Windows was particularly problematic due to
the dependencies such as psycopg (support for PostgreSQL) being
available only in source code format at the time, requiring other
tools such as Microsoft Build Tools (C/C++ compiler tools).
This was coupled with dependencies on specific versions of pandas
and scikit-learn, and newer versions of such libraries were often
incompatible, leading to a growing number of installation conflicts
as the dependencies evolved. This was a convoluted process, and
understandably caused problems for the average new user.

Such issues motivated a permanent solution to the NILMTK
installation process. With the advent of the Anaconda Python dis-
tribution, especially the conda package manager and conda-forge
community repository of packages, NILMTK’s dependencies are
now available in an accessible manner. This enables the entire
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toolkit to be built into a package that is hosted on Anaconda cloud,
that reduces the complex installation process to a single command:

conda install -c nilmtk -c conda-forge nilmtk

3.3.2 New data converters and improvements: This category in-
cludes datastore, format conversion and pre-processing issues. Most
NILMTK code revolves around processing HDF5 files as all data
sets are first converted into a consistent HDF5 file format.
1. Data set converters: Major issues regarding existing data sets have
been addressed and resolved. We have also added converters for
the Dutch residential energy data set (DRED) [20] and the Smart*
data set [1]. These converters currently allow NILMTK to support
12 different data sets.
2. Datastore issues: A host of issues were related errors in format
conversion, data set loaders, metadata representation and HDF
datastores. Most of the bugs have been fixed.

3.3.3 Documentation Changes: The NILMTK documentation has
gone through the following incremental changes and major over-
hauls motivated by the community issues:
1. Installation Documentation: The new installation documentation
now guides the user on how to create, activate and deactivate
conda environments and documents the single line commands to
add conda-forge and install NILMTK.
2. Meter Selection and Basic Statistics: We have added a host of
data exploration plots such as Sankey plot, autocorrelation plot,
etc. We have also written documentation for various methods of
MeterGroup and ElecMeter object selection, etc.
3. AlgorithmUpdates and Testing: The disaggregation algorithms CO,
FHMM and Edge detection have been refined to handle most errors
and use cases. Documentation has been added in the repository’s
manual to reflect these changes.

4 NILMTK-CONTRIB
This section describes the algorithms containedwithin the NILMTK-
contrib repository. We have chosen to house bleeding-edge algo-
rithms in a separate repository to the core toolkit to encourage
algorithm publishers to own the implementation of their algorithm.
We expect algorithms to eventually move into the main NILMTK
repository as they gain maturity. Each of the algorithms described
in this section have been implemented in accordance with the
new disaggregator class described earlier. We have included sim-
pler benchmarks in the NILMTK-contrib repository (and described
them here) during the transition to the new Model Interface.

4.1 Mean
The Mean algorithm is a simple benchmark designed to provide a
well-understood baseline against which more complex algorithms
can be compared. Furthermore, the Mean algorithm can be used in
the documentation to provide a sample algorithm implementation
which algorithm contributors can use as a guide. The trained mean
model calculates and stores only the mean power state for each
appliance. Themean for each appliance is dynamically updated each
time the same appliance is encountered (in each chunk). Prediction
is equally simple - for each value of aggregate reading, the mean
model predicts all appliances to be ON and returns the mean power
value for all appliances. As such, it is similar to the commonly used

“always on” benchmark algorithm. Despite its simple nature, the
Mean algorithm is a solid baseline and performs comparably to
complex disaggregation algorithms on a number of metrics, and
has been used as a baseline in prior work [14].

4.2 Edge Detection
Proposed by George Hart in 1985 [8], this algorithm is often used
as a baseline model for the NILM problem. The technique is based
on edge detection within the power signal, which divides the time
series into steady and transient time periods. An edge is defined as
the magnitude difference between two steady states and typically
corresponds to an appliance changing state (e.g. turning on or off).
Although this algorithm is theoretically unsupervised as it does
not require appliance-level data for training, this means that the
algorithm output (e.g. appliance 1, 2 etc.) need to be mapped to
appliance categories (e.g. refrigerator, washing machine etc.). In our
implementation, we use the best case mapping, in which algorithm
outputs are assigned to the appliance categories which, maximise
the algorithm’s accuracy.

4.3 Combinatorial Optimisation (CO)
The combinatorial optimisation (CO) algorithm [9] has served as a
baseline algorithm in the NILM literature [4, 20]. The CO algorithm
is similar to the well-studied knapsack and subset sum problem.
The main assumption in CO is that each appliance can be in a given
state (1 of K where K is a small number), where each state has
an associated power consumption. The goal of the algorithm is to
assign states to appliances in a way that the difference between the
household aggregate reading and the sum of power usage of the dif-
ferent appliances is minimised. CO’s time complexity is exponential
in the number of appliances and thus does not scale well.

4.4 Discriminative Sparse Coding (DSC)
Sparse coding approximates the original energymatrix by represent-
ing it as a product of over-complete bases and their activations [14].
For each appliance i , we approximate the data matrix as Xi ≈ BiA

∗
i ,

where Xi corresponds to usage, Bi corresponds to bases and A∗
i

corresponds to activations for the ith appliance. The activations
A∗
i are the activations that minimise the reconstruction error for

the ith appliance. Hence, they are the optimal activations, that we
wish to obtain when we disaggregate on the mains reading.

Disaggregation is performed by following the sparse coding
approach on the observed mains reading by concatenating the bases
of all appliances to obtain the activations (Â). The appliance-wise
activations are extracted and are multiplied with the reconstruction
bases to obtain the disaggregated usage. Discriminative Sparse
Coding is an approach which modifies the sparse coding bases to
produce activations that are closer to the optimal solution. The
extracted activations are then multiplied with reconstruction bases
to produce the disaggregated usage.

4.5 Exact Factorial Hidden Markov Model
(ExactFHMM)

The factorial hidden Markov model (FHMM) is a natural model
to represent the NILM problem [15, 19, 22]. In an FHMM, each
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appliance is represented by a hidden Markov model with Ki states
so that the component signal Xi has a finite set of states µi =

(µi1, · · · , µiKi ). Thus, xit ≈ µ̃it where µ̃it ∈ µi for the ith appliance
at time t . We use a binary vector Sit = (Sit1, Sit2, · · · , SitKi )

T to
represent the state of the ith appliance at time t such that Sitk = 1
when the appliance is at state k and for all j , k , Sit j = 0. The
parameters of FHMM are learned using the training data. These
parameters are µik representing the state mean values for appliance
i at state k ; the initial probabilities πi = (πi1, · · · ,πiKi )

T where
πik = P(Si1k = 1); and the transition probabilities p(i)jk = P(Sit j =

1|Si,t−1,k = 1). The posterior distribution of the state variables is:
P(S |Y ) ∝

∏I
i=1 P(Si1)

∏T
t=2

∏I
i=1 P(Sit |Si,t−1)

∏T
t=1 p(Yt |St ).

Given the model parameters denoted by θ , our aim is to infer the
sequence over time of hidden states Si for each appliance. In the
exact formulation, we create a super HMM combining the individual
HMMs in a Kronecker product fashion. For instance, if we had two
appliances with OFF and ON states, our new super HMM would
have four states (appliance 1 OFF, appliance 2 OFF; appliance 1 OFF,
appliance 2 ON; appliance 1 ON, appliance 2 OFF, and appliance 1
ON, appliance 2 ON). As with CO, the exact model scales poorly as
it is exponential in the number of appliances.

4.6 Approximate Factorial Hidden Markov
Model (ApproxFHMM)

Inference of exact solutions in an FHMM is expensive and often
becomes stuck in a local optimum. The approximate FHMM aims
to alleviate these issues by relaxing the state values into [0, 1] and
transforming the FHMM inference problem to a convex program
[22]. To achieve this purpose, we define a Ki × Ki variable matrix
H it = (hitjk ) such that hitjk = 1 when Si,t−1,k = 1 and Sit j = 1, and
otherwise hitjk = 0. Therefore Sitk ∈ [0, 1] and hitjk ∈ [0, 1]. The ob-

jective function becomes L(S,H ,σ−2) = −
∑
i,t,k, j h

it
jk logp

(i)
jk −∑I

i=1 S
T
i1 logπi +

1
2
∑T
t=1 logσ

2
t +

1
2
∑T
t=1

1
σ 2
t

(
Yt −

∑I
i=1 S

T
it µi

)2
.

Denote the constraints QS = {
∑Ki
k=1 Sitk = 1, 0 ≤ Sitk ≤ 1,∀i, t},

QH = {
∑Ki
l=1 H

it
l . = STi,t−1,

∑Ki
l=1 H

it
.l = STi,t , 0 ≤ hitjk ≤ 1,∀i, t}. We

solve the following convex quadratic program (CQP):

min
S,H,σ 2

L(S,H ,σ 2), st QS ∪ QH

4.7 FHMM with Signal Aggregate Constraints
(FHMM+SAC)

The FHMM with signal aggregate constraints is an extension to
the baseline FHMM, where the aggregate value of each appliance i
over a time period is expected to be a certain value µi0. Under this
assumption, the SAC expects

∑T
t=1 xit = µi0. Combining FHMM

with SAC results in the following optimisation problem:

min
S

− log P(S |Y ), subject to

( T∑
t=1

µTi Sit − µi0

)2
≤ ϵi ,∀i,

which can be transformed to a relaxed convex program [22].

4.8 Denoising Autoencoder (DAE)
The denoising autoencoder is a specific deep neural network archi-
tecture designed to extract a particular component from noisy input.
Well-known applications of a DAE include removing grain from
images and reverb from speech signals. In a similar way, Kelly et al.
proposed using the DAE for NILM by considering the mains signal
to be a noisy representation of the appliance power signal [13]. As
such, the mains reading Yt is assumed to be the sum of the power
consumption of the target appliance x jt and noise ηt .

Multiple trained models are required in order to disaggregate a
group of appliances using a DAE since it denoises on a per-appliance
basis. Moreover, the DAE receives a window of the mains readings
of fixed length and outputs the inferred appliance consumption
for the same time window. The length of the input vector can be
tuned for each appliance tomaximise performance. The architecture
proposed by Kelly et al. is the following:
(1) Input with length optimised to the appliance
(2) 1D Convolution: {filters: 8, kernel size: 4, activation: linear}
(3) Fully connected: {size:input length × 8, activation: ReLU}
(4) Fully connected: {size:128, activation: ReLU}
(5) Fully connected: {size:input length × 8, activation: ReLU}
(6) 1D Convolution: {filters: 1, kernel size: 4, activation: linear}

4.9 Recurrent Neural Network (RNN)
Recurrent Neural Networks are a specific type of neural network
that allows for connections between neurons of the same layer.
This makes RNNs well suited for sequential data, much like the
readings of power consumption in NILM. Motivated by this, Kelly
et al. proposed an RNN that receives a sequence of mains readings
and outputs a single value of power consumption of the target
appliance [13]. To overcome the vanishing gradient problem, the
network utilises long short-term memory (LSTM) units which are
special neurons designed to store values in their built-in memory
cell. The proposed architecture in detail is the following:
(1) Input with length optimised to the appliance
(2) 1D Convolution: {filters: 16, kernel size: 4, activation: linear}
(3) Bidirectional LSTM: {number of units: 128, activation: tanh}
(4) Bidirectional LSTM: {number of units: 256, activation: tanh}
(5) Fully connected: {size:128, activation: tanh}
(6) Fully connected: {size:1, activation: linear}

4.10 Sequence-to-Sequence (Seq2seq)
The sequence to sequence learning model [21] learns a regression
map from the mains sequence to the corresponding target appliance
sequence. We denote the mains and the target appliance sequences
as Yt :t+W −1 and Xt :t+W −1 respectively. The seq2seq model is then
defined by the regression xt :t+W −1 = f (Yt :t+W −1,θ ) + ϵt where
theW -dimensional Gaussian noise variable ϵt ∼ N(0,σ 2

t I ). Again
f is a neural network. For learning f , we adopt the architecture
proposed in [21] using stride 1 convolutions and ReLU activations
for all layers except the final one. The other hyperparameters are:
(1) Input sequence with lengthW : Yt :t+W −1
(2) 1D Convolution: {# filters: 30; filter size: 10}
(3) 1D Convolution: {# filters: 30; filter size: 8}
(4) 1D Convolution: {# filters: 40; filter size: 6}
(5) 1D Convolution: {# filters: 50; filter size: 5}
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(6) 1D Convolution: {# filters: 50; filter size: 5}
(7) Fully connected: {# units: 1024}
(8) Output: {Number of units:W }

4.11 Sequence-to-Point (Seq2point)
Following the work in [21], sequence to point learning (seq2point)
models the input of the network as a mains window Yt :t+W −1, and
the output as the midpoint element xτ (t,W ) of the corresponding
window of the target appliance, where τ (t ,W ) = t + ⌊W /2⌋. The
intuition behind this method is that the midpoint of the target appli-
ance should have a strong correlation with the mains information
before and after that time point. Seq2point learning could be viewed
as a non-linear regression xτ (t,W ) = f (Yt :t+W −1,θ ) + ϵt , where θ
are the parameters, for any input sequence Yt :t+W −1 and output
point xτ (t,W ). The function f is represented by a neural network.
For learning f , we adopt the architecture proposed in [21] using
stride 1 convolutions and ReLU activations for all layers except the
final one. The netork is as follows:
(1) Input sequence with lengthW : Yt :t+W −1
(2) 1D Convolution: {# filters: 30; filter size: 10}
(3) 1D Convolution: {# filters: 30; filter size: 8}
(4) 1D Convolution: {# filters: 40; filter size: 6}
(5) 1D Convolution: {# filters: 50; filter size: 5}
(6) 1D Convolution: {# filters: 50; filter size: 5}
(7) Fully connected: {# units: 1024}
(8) Output: {Number of units:1, activation: linear}

4.12 Online GRU
Based on the RNN of section 4.9, Krystalakos et al. proposed a simi-
lar architecture that attempts to reduce the computational demand
while maintaining the same performance [16]. This version has
replaced the LSTM units with light-weight Gated Recurrent Units
(GRU) and optimised the recurrent layer sizes to reduce redundancy.
As a result, this architecture manages to decrease the number of
trainable parameters by 60%, relative to the original RNN model.

When deployed. the Online GRU model receives the lastW avail-
able mains readings Yt :t+W −1 as input and uses them to calculate
the power consumption x j(t+W −1) of a single appliance j, for the
last time point. The window size W can be optimised for each
appliance individually. The architecture in detail is the following:
(1) Input with length optimised to the appliance
(2) 1D Convolution: {filters: 16, kernel size: 4, activation: linear}
(3) Bidirectional GRU: {# units: 64, activation: tanh, dropout: 0.5}
(4) Bidirectional GRU: {# units: 128, activation: tanh, dropout: 0.5}
(5) Fully connected: {size:128, activation: tanh, , dropout: 0.5}
(6) Fully connected: {size:1, activation: linear}

5 EXPERIMENTAL RESULTS
We now describe the settings used for our experiments before
demonstrating usage of NILMTK across a range of application sce-
narios. The focus of this evaluation is to demonstrate the flexibility
of NILMTK as a tool for algorithmic comparison across different
scenarios. As such, an exhaustive discussion of each algorithm’s
performance is beyond the scope of this work. All our experiments

are completely reproducible and have been pushed to Github5. In
the interest of space, we will discuss the listing only for Section 5.3.

5.1 Settings
The tests were run on virtual machines with 2x8 GB vRAM Nvidia
Tesla M60 GPU’s with Intel(R) Xeon CPU (12 Cores @2.6 GHz)
and 128 GB RAM. The sample period was 60 seconds. All neural
algorithms were trained for 50 epochs with a batch-size of 1024,
except for OnlineGRU which was trained for 30 epochs. All neural
networks were also optimised by fine-tuning the algorithm param-
eters such as sequence-length and the appliance-wise parameters
such as the max-value, etc. The optimal values for the parameters
were provided by the algorithm authors.

5.2 Train and test across buildings from the
same data set

In this experiment, we train and test across multiple buildings from
the Dataport data set. We trained the models on 10 buildings and
then tested them on 5 unseen buildings. The training duration was
14 days and the testing duration was 7 days, with the models train-
ing and disaggregating 4 appliances for each building. The main

Algorithms Fridge Air Electric Washing
Conditioner Furnace Machine

Mean 63.3±07.7 224.8±16.4 81.5±01.6 5.07±00.8
Edge detection 41.1±18.1 86.8±30.5 30.2±11.2 4.8±01.3
CO 65.7±42.3 98.5±85.7 56.9±55.4 105±19.0
DSC 78.4±56.5 71.5±36.0 39.1±17.9 6.5±05.7
ExactFHMM 66.7±23.5 45.5±44.6 95.3±110.5 59.9±17.5
ApproxFHMM 63.8±08.0 139.9±130.2 26.5±12.0 30.7±21.3
FHMM+SAC 59.2 ±05.7 97.0±40.3 35.1±19.0 3.8±00.7
DAE 32.2±11.8 39.3±27.9 29.4±15.3 3.1±01.6
RNN 38.4±07.9 46.6±30.6 33.9±20.6 3.5±01.2
Seq2Seq 28.1±09.5 32.3±25.2 27.9±15.3 2.3±01.2
Seq2Point 23.5±12.1 24.8±20.9 27.5±15.0 2.4±00.9
OnlineGRU 28.8±11.4 25.3±17.1 34.5±15.0 3.0±01.4

Table 1: MAEMean ± Std. Error: train/test on different set of
buildings, same data set

results for this experiment can be found in Table 1. The neural
network models perform comparably, with Seq2Point and Seq2Seq
achieving the best performance. Interestingly, the edge detection
algorithm achieves good performance for fridges. This can be ex-
plained by the fact that for simple appliances with a single ON-OFF
component (in this case, a compressor-controlled duty cycle), simple
edge detection is likely to work well. This is an important finding,
in that it appears that only more complex appliances motivate the
use of complex disaggregation algorithms. The mean algorithm
performs reasonably well for washing machine. This finding sug-
gests that accurately disaggregating sparsely used appliances is
still non-trivial for modern algorithms. However, a different metric
that is better suited to handle class imbalance would reveal the
inaccuracy of the Mean model.
5https://github.com/nilmtk/buildsys2019-paper-notebooks

https://github.com/nilmtk/buildsys2019-paper-notebooks
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1 d = {
2 'power ': {
3 'mains ': ['apparent ', 'active '], 'appliance ': ['apparent ', 'active ']
4 },
5 'sample_rate ': 60,'artificial_aggregate ':False ,
6 'appliances ': ['washing machine ', 'fridge '],
7 'methods ': {
8 'Mean': {}, 'CO': {},
9 'FHMM_EXACT ': {
10 'num_of_states ': 2
11 },
12 'AFHMM ': {}, 'AFHMM_SAC ': {}, 'Seq2Point ': {}, 'Seq2Seq ': {},'RNN': {},
13 'WindowGRU ': {}, 'DAE': {}, 'DSC': {},
14 },
15
16 'train ': {
17 'datasets ': {
18 'UKDALE ': {
19 'path': '/data/UKDALE/ukdale.h5',
20 'buildings ': {1: {'start_time ': '2017 -01 -05', 'end_time ': '2017 -03 -05'},
21 }
22 },
23 }
24 },
25 'test': {
26 'datasets ': {
27 'DRED': {
28 'path': '/data/DRED/DRED.h5',
29 'buildings ': {1: {'start_time ': '2015 -09 -21', 'end_time ': '2015 -10 -01'}
30 }
31 },
32 'REDD': {
33 'path': '/data/REDD/redd.h5',
34 'buildings ': {1: {'start_time ': '2011 -04 -17','end_time ': '2011 -04 -27'}
35 }
36 }
37 },
38 'metrics ': ['mae', 'rmse']
39 }
40 }

Listing 5: Experiment Interface for section 5.3

5.3 Train and test across multiple buildings
from multiple data sets across data sets

In this experimental setup, we trainedmodels on 2 appliances across
a building from UK-DALE and then tested them on 1 building from
DRED and 1 building from REDD. The total training duration was 2
months and the testing duration was 10 days for each building. List-
ing 5 corresponds to the declarative definition of this experiment,
where the line numbers are referenced as follows:
• L5: sampling frequency is 60 seconds and disable artificial aggre-
gate mode.

• L6: appliances are washing machine and fridge.
• L8-L14: specify the methods to be used for disaggregation.
• L16-L24: train on 2 months of data from building 1 from UKDALE.
• L25 - L37: use ten days of data from building 1 of DRED (L32-40)
and building 1 of REDD for testing (L42-48).

• L38: specify the metrics to be reported.
It should be noted that an empty dictionary passed to an algorithm
means that the algorithm is using default parameters for training.
In previous versions of NILMTK, no documentation for executing
such experiments existed owing to the non-trivial code required. In
fact, in an attempt to create such functionality in previous version
of NILMTK, the core contributors had to write a different function
which would train across different buildings.

As can be seen from the result in Table 2, all the algorithms
had noticeably poor performance on the test home for the REDD
data set as compared to the DRED data set. This is likely due to
the fact that the model was trained on a European Data set (UK),
and thus the metrics were reasonable for the data set based in
Europe, i.e. DRED (Netherlands) whereas the models performworse
for the REDD data set (USA), owing differences in appliances and
usage behaviour between Europe and North America. Themoderate
performance of modern neural network based algorithms can be
potentially attributed to their overfitting to the appliance patterns

of the training geography. Further, the mean baseline performs very
close to the best algorithm for washing machine usage for DRED,
but does much worse for REDD. This can likely be explained by the
difference in baseline appliance energy usages across Europe and
USA. Experiments such as this open up the interesting possibilities
of transfer learning in the energy disaggregation domain [2].

REDD - Home 1 DRED - Home 1
Algorithms Fridge Washing Fridge Washing

Machine Machine
Mean 62.3 47.2 43.4 25.6
Edge detection 37.0 57.1 21.8 40.7
CO 99.3 171.1 45.9 47.2
DSC 61.5 48.9 34.3 12.1
ExactFHMM 95.9 179.6 32.3 19.1
ApproxFHMM 67.0 227.9 34.6 94.5
FHMM+SAC 48.1 30.4 31.1 19.0
DAE 41.7 50.1 16.9 3.8
RNN 50.9 19.2 27.8 7.3
Seq2Seq 40.9 23.3 18.5 2.9
Seq2Point 44.1 25.5 17.1 3.1
OnlineGRU 36.4 29.5 24.3 6.9

Table 2: MAE: train/test across multiple buildings and data
sets

5.4 Train and test on artificial aggregate
In the this experiment, we train and test on 2 buildings from the
Dataport data set, using true (obtained from smart meter) and ar-
tificial aggregate (calculated by summing the power readings of
the appliances to be disaggregated). The artificial aggregate does
not contain either structured noise from appliances which were
not sub-metered or unstructured noise contributed by the mains
sensor hardware. This scenario is often used for algorithm com-
parisons despite its lack of realism. This is due to the requirement
for training data to be available for all appliances present in the
aggregate signal, which is a common issue in data sets due to the
practical difficultly in sub-metering all appliances within a building.
The training was done on the first 20 days and the testing was done
on the next 7 days for each building. The 2 most commonly used
appliances were chosen for disaggregation.

Table 3 shows the main result where we can notice the supe-
rior disaggregation performance on the artificial aggregate for all
algorithms. The only exception being the mean algorithm, that
is independent of the aggregate data. The performance of neural
networks on the air conditioner has improved significantly with
artificial aggregate. However, the most significant improvement
comes from the FHMM variants. This can be explained by the fact
that FHMM variants have a state space that is exponential in the
number of appliances and FHMM can explain the noise in true
aggregate via a wrong appliance state space combination. In the
absence of noise, the probability of estimating the correct state
space combination is much more likely. This experiment represents
the ideal scenario for energy disaggregation and might be prevalent
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Algorithms True Aggregate Artificial Aggregate
Fridge AC Fridge AC

Mean 43±04 176±40 43±04 176±40
Edge Detection 43±04 156±31 15±06 89±65
CO 104±08 90±34 18±03 15±07
DSC 67±05 130±29 53±14 55±20
ExactFHMM 56±10 83±16 14±01 24±03
ApproxFHMM 46±06 210±78 41±07 77±24
FHMM+SAC 32±04 132±47 36±07 125±28
DAE 22±05 34±08 14±01 8±02
RNN 31±01 78±24 11±01 10±03
Seq2Point 14±02 20±06 5±01 4 ±01
Seq2Seq 16±02 22±05 9±01 9±02
WindowGRU 20±04 23±09 8±02 7±03

Table 3: MAE: train/test across same buildings with true and
artificial aggregate

in geographies where majority of the energy consumption can be
attributed to a small set of appliances.

6 CONCLUSION
In this paper, we have have described two key improvements to
NILMTK; a rewritten model interface to simplify authoring of new
disaggregation algorithms, and a new experiment API through
which algorithmic comparisons can be specified with relatively
little model knowledge. In addition, we have introduced NILMTK-
contrib, a new repository containing 3 benchmarks and 9 modern
disaggregation algorithms. Furthermore, we have demonstrated
these contributions through the most comprehensive algorithmic
comparison to date. Taken together, these toolkit contributions
enable empirical evaluations to be easily reproduced, therefore
increasing the rate of progress within the field.

In the short-term, future work will focus on an exhaustive em-
pirical evaluation of the algorithms presented in NILMTK-contrib
across all publicly available data sets and a range of accuracy met-
rics. Longer-term future work will include collaboration with the
community to ensure new algorithmic advances are incorporated
within the NILMTK-contrib repository. In addition, such algorithms
will be continuously evaluated in a range of pre-defined scenarios
to produce an ongoing NILM competition.
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