
EdgeNILM: Towards NILM on Edge devices
Rithwik Kukunuri

kukunuri.sai@iitgn.ac.in
IIT Gandhinagar, India

Anup Aglawe∗
anup.aglawe@iitgn.ac.in
IIT Gandhinagar, India

Jainish Chauhan∗
chauhan.jainish@iitgn.ac.in

IIT Gandhinagar, India

Kratika Bhagtani∗
kratika.bhagtani@iitgn.ac.in

IIT Gandhinagar, India

Rohan Patil∗
rohan.patil@iitgn.ac.in
IIT Gandhinagar, India

Sumit Walia∗
sumit.walia@iitgn.ac.in
IIT Gandhinagar, India

Nipun Batra
nipun.batra@iitgn.ac.in
IIT Gandhinagar, India

ABSTRACT
Non-intrusive load monitoring (NILM) or energy disaggregation
refers to the task of estimating the appliance power consumption
given the aggregate power consumption readings. Recent state-
of-the-art neural networks based methods are computation and
memory intensive, and thus not suitable to run on "edge devices".
Recent research has proposed various methods to compress neural
networks without significantly impacting accuracy. In this work,
we study different neural network compression schemes and their
efficacy on the state-of-the-art neural network NILM method. We
additionally propose a multi-task learning-based architecture to
compress models further. We perform an extensive evaluation of
these techniques on two publicly available datasets and find that
we can reduce the memory and compute footprint by a factor of
up to 100 without significantly impacting predictive performance.

CCS CONCEPTS
• Computing methodologies→Machine learning.
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1 INTRODUCTION
Non-intrusive load monitoring (NILM) or energy disaggregation
refers to the task of estimating the appliance-wise energy con-
sumption in a household using the total power consumption read-
ings available at the mains meter. Previous work [2] shows that
households can save up to 15% energy when provided with such
appliance-wise feedback. George Hart [12] studied the first algo-
rithm for NILM in 1984. Recently, there is an increased interest
in the field of NILM owing to smart meter rollouts. A variety of
algorithms have been proposed in the recent past, including ad-
ditive factorial hidden Markov models [19], discriminative sparse
coding [18], graph signal processing [13], among others.

Recently, Kelly et al. [16] proposed neural-NILM, one of the first
methods that tackled energy disaggregation using neural networks.
They adopted three known neural network models for NILM, in-
cluding denoising auto-encoder, recurrent neural networks, and
regression of the start time, end time, and the power consumed by
an appliance. Similarly, various neural network architectures were
proposed for NILM [14, 21, 29]. More recently, Zhang et al. [29]
proposed Seq2Point, an architecture based on 1-dimensional con-
volutions. Seq2Point model is the current state-of-the-art model
for disaggregation (for low-frequency data), and its superiority has
been independently verified [4].

Seq2Point and similar neural network models generally have
large memory and computation requirement. Thus, the inference
(disaggregation for a test home) is performed on cloud using pow-
erful GPUs. Such an architecture where the smart meter data is
sent from a home to the cloud for inference has two disadvantages:
higher data transmission and privacy concerns. Previous work [5]
shows that household characteristics can be revealed using smart
meter data. In this paper we explore the question - can we perform
inference of such accurate neural network models on a constrained
device installed at a test home? Such constrained devices are often
called “edge devices”.

There has been a lot of interest recently towards deploying com-
pressed neural networks in “edge devices”, often called “edgeML” [9].
The primary goal of such compression is to reduce the memory and
computation overhead of neural networks without significantly
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reducing the predictive performance. Various techniques for com-
pressing neural networks have been proposed. These techniques in-
clude: pruning [24], tensor decomposition [22], weight sharing [25],
quantisation [30], and several others.

To the best of our understanding, compression of neural network
models for NILM has not yet been studied. Against this background,
we now propose our contributions in this paper:
• We present a thorough analysis of the memory and time require-
ments of the Seq2Point model.

• We evaluate the performance of various compression techniques
on the Seq2Point model on a publicly available dataset, along with
the memory benefits and speedups.

• We introduce a multi-task learning approach for the NILM
• We release the trained models as open-source and make these
compatible with nilmtk [3] and release a toolkit called edgeNILM.1

The rest of the paper is structured as follows. First, we formalise
energy disaggregation in Section 2.1. In Section 2, we describe the
state-of-the-art neural network approach for NILM, which is the
Seq2Point architecture, including an in-depth analysis of the mem-
ory and the time requirements of the model. Next, we discuss the
compression techniques used to enable the working of Seq2Point
model on edge devices in Section 3, followed by a modified version
of the architecture using themulti-task learning approach in Section
4. In Sections 5 and 6, we evaluate and demonstrate respectively the
performance of all these compression techniques in terms of disk
space requirements, inference times, and floating-point operations
of different models. In Section 7, we further analyse our results and
discuss extensions. Later, we discuss the shortcomings of some of
these techniques and the possible future directions of EdgeNILM
in Section 8 and 9, before concluding in Section 10.

2 SEQUENCE-TO-POINT MODEL
2.1 Mathematical Notation
The goal of NILM is to estimate the power consumed (𝑦𝑖𝑡 ) by 𝑖𝑡ℎ

appliance at time 𝑡 given the aggregate reading 𝑥𝑡 at time 𝑡 . The
household power consumption can be modelled as: 𝑥𝑡 = 𝑦1𝑡 + 𝑦2𝑡 +
· · · + 𝜖 , where 𝜖 indicates the noise or the residual power.

We now discuss the Seq2Point algorithm in detail. We first de-
scribe the model architecture. Later, we analyse the processor and
memory requirements of the algorithm.

2.2 Model Architecture
Zhang et al. [29] proposed Seq2Point architecture. Figure 1 demon-
strates the model architecture. A separate model is learnt for each
appliance. A window of the sequence of the mains readings is fed as
an input to the model. The input windows are standardised so that
the mean of the sequence is zero, and the standard deviation equals
one. When computing the input windows for points that lie on the
ends, we pad the windows with zeros. During training, the output
appliance readings are also standardised using the appliance-wise
means and standard deviations.

The model predicts the appliance reading at the mid-point of the
window. The architecture has a sequence of 1D-convolutions to pro-
cess the input window, which is later followed by fully-connected

1https://github.com/EdgeNILM/EdgeNILM

Table 1: Inference time and the model size of Seq2Point
model for different sequence length

Sequence length MFLOPS Model size (MB)
49 1.98 4.07
99 6.42 13.84
199 15.30 33.37
499 41.95 91.96
599 50.84 111.49

Table 2: Percentage of the floating-point operations in the
convolution layers and dense layers during a forward pass

Sequence Percentage of Percentage of
Length convolution layer dense layer

FLOPS FLOPS
49 48.14 51.86
99 44.14 55.86
199 43.11 56.89
499 42.63 57.37
599 42.59 57.41

or dense layers2. The input window denotes the context around
the point for which we disaggregate. As we increase the input win-
dow size (sequence length), the model consumes more memory and
needs more time for prediction.

2.3 Memory and Time Requirement for
Seq2Point Model

We compare the memory and number of floating-point operations
required for a single forward pass for different sequence lengths. A
single forward pass is indicative of the computation required for
predicting disaggregated usage for one timestamp. Table 1 shows
the input window size, the inference time for a sample, and the
model size for a single appliance. We denote the inference time
in terms of the floating point operations required (FLOPS). An
important reason behind showing FLOPS instead of run time is that
the run time is dependent on the device and its nuances, including,
but not limited to caching. We will discuss the run time in our
experiments presented later.

As the input sequence length increases, the inference time (in
terms of the number of required floating point computations) and
the model size keeps increasing. Further, if we disaggregate 𝑛 appli-
ances, we need to store 𝑛 such models on the edge devices. Consider
a hypothetical scenario, where we disaggregate ten appliances us-
ing a window size of 399. The model for an appliance with the
input of length 399 occupies 72.4 MB. We need to store ten such
trained models, which amount to 724 MB. We might not be able
to store these models on constrained edge devices. We also cannot
generate predictions in real-time on edge devices with these large
models. Hence, there is a need to reduce the memory footprint and
the inference time of the model.

We now discuss thememory and computation requirement of the
two types of layers in the Seq2Point model: convolution layers and
dense layers. Table 2 shows the time spent in the convolution layers

2We use dense and fully-connected interchangeably in the paper
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Figure 1: Seq2Point Model architecture. Image inspired by [10]

and dense layers with respect to sequence length. We can observe
that the number of convolution layer floating-point operations
(FLOPS) and the dense layer FLOPS are approximately the same for
smaller sequence lengths. Thus, we can say that approximately the
same amount of time is spent in the convolution and dense layers
for small sequence lengths. An important caveat to the previous
statement is that caching and other architectural nuances could
mean different time for similar number of FLOPS. As the sequence
length increase, the computation for dense layers increase more
than the convolution layers.

Having discussed the computation requirement and breakup of
Seq2Point method, we now discuss thememory requirements. Table
3 shows the proportion of weights consumed by the convolution
layers and dense layers. From this table, we can infer that dense
layers predominantly account for most of the Seq2Point model
parameters. Moreover, it attests that although convolution layers
do not account for most of the model parameters, a significant
amount of computations are from the convolution layers. This is
explained by “parameter sharing” in convolution filters.

By performing optimisations on both the dense and convolution
layers, we can achieve significant speedup for inference time and
reduction in model size. If we aim to reduce the model’s inference
time for larger window sizes, we need to optimise the dense layer
calculations. Similarly, if we wish to reduce the inference time of the
model for smaller window sizes, we should focus more on reducing
the computation in the convolution layers. If we want to reduce the
model size, we need to focus more on the dense layer optimisations.

3 COMPRESSING NEURAL NETWORKS
We now explore different techniques to optimise the Seq2Point
model. However, we first broadly review the field. Various algo-
rithms/techniques [11, 22–24] for compressing neural networks
without significantly impacting accuracy have been proposed. Among
these techniques, the ones useful to optimise the convolution layers
in a neural network include weights pruning, filter pruning [24],

Table 3: Table showing the percentage of weights consumed
by the convolution layers and dense layers

Sequence Percentage of Percentage of
Length convolution layer dense layer

weights weights
49 3.87 96.13
99 1.14 98.86
199 0.47 99.53
499 0.17 99.83
599 0.14 99.86

weights sharing [25], weights quantisation [30], and tensor de-
composition [22]. Similarly, we can optimise the dense layers in
a neural network using weights pruning, neuron pruning, tensor
decomposition[22], and several others. We use a few of the tech-
niques mentioned above for optimising the Seq2Point model.

Surprisingly, it is also worth noting that sometimes compression
of neural networks might lead to better performance on the test
set [6]. By removing the weights from a neural network we can
expect better generalisation, faster inference times and it requires
fewer examples for training [23].

3.1 Pruning
In this section, we describe the pruning methods we used for im-
proving the memory and inference time of the Seq2Point model.
Pruning refers to the task of sparsifying a neural network by sys-
tematically removing parameters [6]. The goal of pruning is to
take an initial large accurate model and produce a smaller network
with comparable accuracy. While there are several ways to create
a pruned model, the high-level algorithm [6] for pruning involves
the following steps across different methods: i) train a network to
convergence; ii) score the set of parameters based on some crite-
rion; iii) prune or remove the least important parameters as per
the score in step ii; iv) fine-tune or train the pruned network for a
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Figure 2: Filter Pruning. Thefilter in blue is removed in layer
𝑙 . Hence, we also need to remove the weights in the next
layer that correspond to the removed filter

few iterations. Some implementations schedule the pruning and
fine-tuning in an iterative procedure, repeating steps iii and iv.

We nowdiscuss two different pruning strategies for the Seq2Point
model for two types of layers: convolution and dense layers.

3.1.1 Filter Pruning. The 1D-convolution filters in the Seq2Point
model are 3-dimensional tensors. A 1D-convolution filter 𝑇 is of
shape (𝑂, 𝐼, 𝐹 ), where 𝑂 denotes the number of output channels, 𝐼
denotes the number of input of channels, and 𝐹 denotes the filter
size. As an example, the first layer of the Seq2Point model (Figure 1)
has 30 output filters and uses filters of size 10. The input to this
layer is a single channel input of a given sequence length 𝐿. Hence,
the weights tensor for this layer is of shape (30, 1, 10). After the
first convolution, the output is of shape (30, 𝐿 − 10 + 1). Similarly,
we can compute the shapes for the outputs of other layers as well.

All the learned 1D convolution filters in a trained Seq2Point
model are not equally useful. Hence, we optimise the model by
pruning the “less important” convolution filters for memory bene-
fits and speedups [24]. The importance or score of the filters can
be defined by various criteria such as ℓ21 norm, ℓ22 norm, and the
net change in loss caused by removing the filter [1]. In this work,
we chose to prune 𝑘% of filters in every layer with the least ℓ21
norm. Previous work [24] also used ℓ21 norm for scoring the filters.
When a convolution filter from layer 𝑙 is removed (pruned), we
also need to remove the channel in layer 𝑙 + 1 corresponding to
the removed filter, as shown in Figure 2. When we prune a filter in
the last convolution layer, the number of output neurons after flat-
tening will change. So, we need to remove the dense layer weights
corresponds to the removed filters in the first dense layer of the
Seq2Point model.

3.1.2 Neuron Pruning. This technique is specially used for optimis-
ing the dense layers in a neural network. In this paper, we decide
the importance of a neuron using the ℓ1 norm and remove 𝑘% of
the neurons with the lowest weights in a layer. Since dense layers
generally occupy a significant proportion of the space requirement
of the model (From Table 3), this technique can help in considerably
reducing the model size. When a neuron is removed from layer 𝑙 ,
we also need to remove the weights corresponding to it in layer
𝑙 + 1. Figure 3 shows neuron pruning. The time required for the
forward pass in the dense layer depends on the input sequence
length to the Seq2Point model as the number of input features is
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Figure 3: Neuron Pruning. The neuron in blue is removed
in layer 𝑙 . Hence, we also need to remove the weights in the
next layer that correspond to the removed neuron

a function of the input vector. In the Seq2Point architecture with
larger window sizes, a significant amount of computation is done in
the dense layers. Hence this technique will be useful for reducing
the inference time for longer window lengths.

3.1.3 Pruning Scheduling. We can schedule the pruning in two
ways:
Normal Pruning:We prune the network by the desired amount
in one go and retrain the model on the training set.
Iterative pruning An alternative is to follow the process of it-
erative pruning, where we prune the neural network, one small
proportion at a time (till we achieve the desired level of pruning),
and retrain it [24]. Iterative pruning takes significantly longer be-
cause it involves pruning and retraining the model several times.
When a model is trained iteratively, it does not lose too many fea-
tures for retraining at once.

3.2 Tensor Decomposition
We now discuss tensor decomposition method for compressing
the neural network. The key intuition is to perform a low-rank
decomposition of the learnt convolution filters and weight matrix.

Lebedev et al [22] used tensor decomposition on the AlexNet
architecture for reducing the inference time of the model. In this
paper, we apply this concept of tensor decomposition for mak-
ing the Seq2Point model faster and smaller. We can approximate
3-dimensional tensor 𝑇 of shape (𝑂, 𝐼, 𝐹 ) corresponding to convo-
lution filters by doing an outer product of the matrices of shape
(𝑂 × 𝑟, 𝐼 × 𝑟, 𝐹 × 𝑟 ) where 𝑟 denotes the rank for doing the tensor
decomposition.

𝑇 ≈ (𝑂 × 𝑟 ) ⊗ (𝐼 × 𝑟 ) ⊗ (𝐹 × 𝑟 ) (1)

We are storing three matrices (𝑂 × 𝑟 ), (𝐼 × 𝑟 ), (𝐹 × 𝑟 ) instead of
storing a convolution filter of shape 𝑂𝐼𝐹 . If we do not use tensor
decomposition, the space occupied by the convolution layer is
O(𝑂𝐼𝐹 ). When we use a rank-r tensor decomposition, the total
space occupied by the convolution layer is O(𝑂𝑟 + 𝐼𝑟 + 𝐹𝑟 ). A
standard 1D-convolution layer 𝑇 (𝑂, 𝐼, 𝐹 ) can be replaced by:

• Conv1D (Output=r, Input=I, stride=1)
• Conv1D (Output=r, Input=r, Groups=r, stride=F)
• Conv1D (Output=O, Input=r, stride=1, Bias=True)

Performing the above sequence of operations on an input of
shape (𝐼 , 𝐿) results in the output of shape (𝑂, 𝐿 − 𝐹 + 1), which is
the same shape if the input is convoluted using the original matrix.
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Figure 4: Our proposed multi-task learning architecture built over the Seq2Point model

The convolution operation suggested above has a lower number of
multiplications and additions if we appropriately choose the rank r.

Similarly, we can optimise the dense layers in the neural network.
Assume that we have a dense layer with 𝐼 input neurons and 𝑂

output neurons. A matrix𝑀 of shape (𝑂, 𝐼 ) can represent the dense
layer. We can approximate this matrix by doing a tensor product of
matrices of shape (𝑂 × 𝑟 ), and (𝐼 × 𝑟 ).

𝑀 ≈ (𝑂 × 𝑟 ) ⊗ (𝐼 × 𝑟 ) (2)

Without decomposing the weight matrix, the size of the model is
O(𝑂𝐼 ). Instead, if we use tensor decomposition to store the model,
then the size of the model is O(𝑂𝑟 + 𝐼𝑟 ). However, Equation-1 and
Equation-2 can only reduce the space occupied by the model.

When an input sample (𝑥) having 𝐼 output neurons is fed into
the dense layer, the output is computed using 𝑥𝑊𝑇 . We can also
reduce the number of computations by using tensor decomposition.
Given an input (𝑥), the output can be computed as: Output =(
𝑥 ×

(
𝐼 × 𝑟

))
×

(
𝑟 ×𝑂

)
In the above operation, we have a total of O

(
𝑟𝐼 +𝑂𝑟

)
operations,

assuming a single input. In the original dense layer, we have a total
of O

(
𝐼𝑂

)
. If we choose the rank 𝑟 appropriately, we can reduce the

number of computations and the model size.
The computations in the convolution layer and the dense layer

can be made faster based on the value of rank 𝑟 . If we choose the
value of 𝑟 to too low, it results in substantial memory benefits, but
the neural networks underfits. On the other hand, if we choose
the rank 𝑟 to be high, the convolution operations and dense layer
operations will be computationally expensive. Thus, we need to
choose an appropriate value of 𝑟 , which fits the model sufficiently
and also makes the computations faster.

4 NEW ARCHITECTURE: MULTI-TASK
LEARNING (MTL)

Our aim is to create optimised models for multiple appliances
such as fridge, washing machine, and several others. In the vanilla
Seq2Point, we trained a separate model for every appliance. This
method is single-task learning (STL), i.e., learning one task at a
time [8]. Instead, if we take advantage of sharing common features
of all the appliances, we can save memory. This technique is multi-
task learning (MTL). Using MTL, we can train a single model for all

the appliances. MTL is useful as an edge-algorithm because it uses
the knowledge of one task for learning better in another task [8].
The results of experiments done in [8] indicate that MTL works for
many such real-life applications.

The process of predicting appliance energy can be divided into
two parts. The first part is to extract useful features from the mains
reading such as detecting spin-cycles for washing machine like ap-
pliances, edge detectors for ON/OFF appliances, and several others.
The second part is to use these extracted features to predict the
appliance usage. Our intuition behind the MTL approach is that we
can learn a set of features applicable to all appliances.

Various MTL architectures can be proposed. In this paper, we
focus on the hard parameter sharing method, which is a commonly
used approache [7]. All the layers from the Seq2Point model are
shared except the final dense layer. The last layer is appliance-
specific and generates separate predictions for each appliance. As
demonstrated in Figure 4, the model is constructed as follows:
(1) The input to these shared layers is the mains sequence. The
original mains sequence is normalised by subtracting its mean and
dividing by the standard deviation of the data. This is done so to
bound the weights.
(2) The input passes through a series of five convolutional layers
and a dense layer. These layers are common for all appliances.
3) After these shared layers, the model diverges into separate layers
for each appliance.

For training the MTL model, the mains reading sequence is the
input to the network, and the readings from all the appliances are
the target variables. The loss function computed for optimising the
MTL model combines the losses from all the appliances. Compared
to the STL model, we can save time and space. We can also increase
the number of common layers to reduce error at the expense of
increased inference time and model size.

5 EVALUATION
In this section, we discuss the dataset, the experimental settings
and the configurations of the devices we used for experiments.

5.1 Datasets
We used the REDD [20] and the UK-DALE [17] datasets to evaluate
the performance of our models. We chose REDD and UK-DALE as
they: i) are both freely publicly available; ii) have a sufficient number
of homes for testing, while other data sets either have few homes
or are not freely available; and iii) they have been used in various
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previous NILM studies [3, 4, 13, 16, 19, 29] for benchmarking.3
In the interest of space, most of our experiments focus on the
REDD dataset. We chose this dataset since it is one of the most
popular publicly available data sets and is benchmarked in various
researches for NILM, including Seq2Point. The dataset consists of
power readings from six homes across various household appliances
such as refrigerators, washing machines, dishwashers, microwaves,
and several others. The data for the appliances was collected every
3 or 4 seconds. In this paper, we down-sample the readings to 1-
minute and evaluate the performance at this frequency, as is done
in previous literature [3] and also to handle missing data.

5.2 Metrics
In this paper, we evaluate the performance of themodels usingmean
absolute error and F1-score (both of which have been used in prior
NILM research [3, 15, 16, 29]. ). However, in consideration of the
space, we report the F1-score for only a subset of our experiments.

Mean absolute error (MAE): For an appliance 𝑖 , it is defined
as the mean of the absolute difference between the ground truth
and the prediction. Lower MAE indicates better performance.

MAE =

∑
𝑡

���𝑦𝑖𝑡 − 𝑦𝑖𝑡

���
𝑡

F1-score:We compute the F1-score over the binary state of an
appliance - OFF or ON. Although F1-score for multi-class has also
been defined, we only discuss the binary version in consideration of
space. The ground truth and predicted time-series are converted to
binary ON/OFF time series by using a threshold to indicate ON. This
metric is useful for evaluating the performance of sparse appliances,
such as washing machine or dishwasher.

Both these metrics are useful for different applications. MAE is
better when it is important to consider the energy consumption,
whereas F1-score is better suited to demonstrate NILM efficacy for
sparsely used appliances.

5.3 Experimental Setup
We now discuss the various experimental settings for our exper-
iments on two data sets. Our experiments are based on similar
experiments in previous research [3, 4, 16, 29].
Experiment 1: REDD dataset
Dataset: Our main experiment is to evaluate the performance on
the REDD data set for various compression and edge algorithms
applied over the Seq2Point model.
Sequence length: The sequence length is a hyper-parameter for
the model. We test the performance over two different sequence
lengths: 99 and 499. These sequence lengths were chosen due to
two reasons: i) they are comparable to the experiments in original
Seq2Point paper; ii) they can show the performance gain over two
highly separated values. It should be mentioned that the main pur-
pose of the paper is to show the performance gains of compression,
but not to find the optimal sequence length.
Appliances: We report the performance of these algorithms over
three appliances (similar to [4]): the dishwasher, washing machine,

3It should be noted that prior studies (Table 4 from [3]) show that REDD and UK-DALE
are amongst the most difficult data sets for NILM and the performance of the discussed
methods will likely be better on other data sets.

and refrigerator.We use these three appliances for the following rea-
sons. First, they are the three highest energy-consuming appliances
in the REDD data set discounting for lighting. We do not consider
lighting given the highly variable number of lighting equipment
across different homes, making it poorly suited for disaggregation.
Second, we chose these three appliances as they represent a variety
of appliances. A fridge is an appliance which always runs in the
background. In contrast, the washing machine and dishwasher are
interactive appliances.
Cross-validation:Weperform 3-fold cross-validation on the REDD
dataset and report the mean of errors across all of the folds. We
perform disaggregation by down-sampling the high-frequency read-
ings to 60-second readings to account for missing data [3, 4].
Trainingunoptimisedmodel:The unoptimised STLmodels were
trained using Adam optimiser for faster convergence with a batch
size of 64 for 20 epochs. We used this batch size for faster conver-
gence of the models. The model reaches convergence by the end of
10 epochs; we used 20 epochs to ensure that the model has sufficient
epochs to finish the training. Our procedure is heavily inspired by
previous work [6].
Pruning settings: We applied both filter pruning and neuron
pruning on the STL unoptimised model for reducing the inference
time and model size. We chose the percent of the network to be
pruned and pruned the convolution layers and the dense layers.
As discussed in Section 3.1, we pruned the dense layers and con-
volution layers by 30%, 60%, and 90%. Similarly, we pruned the
STL unoptimised model in 10% increments and retrained for iter-
atively training the model. This way, we were able to prune the
model by 10%, 20%, . . . 90%. We report the iteratively trained model’s
performance for 30%,60%, and 90%.
Tensor decomposition settings: As discussed in Section 3.2, we
apply tensor decomposition of rank 1,2,4 and 8 on the dense layers
and convolution layers on the STL unoptimised model.
Fine-tuning: After we apply pruning and tensor decomposition,
we retrained the model for 20 more epochs for fine-tuning the
weights. The models converge around 10 epochs, and we retrained
it till 20 epochs to ensure we do not perform early stopping. We
report the results of the retrained model with the best performance
on the validation set. We sampled 25% of the samples from the
training set randomly to create a validation set.
MTL model settings: The MTL models are trained for 60 epochs.
The MTL models were converging at a slower rate since we are
jointly optimising for all appliances at once. Hence, the MTLmodels
were trained for more epochs. The pruned MTL models were also
retrained for 60 epochs. The MTL model and its pruning variants
were also trained similarly, as described above.
System Hardware: The models were run on an NVIDIA Titan
XP GPU with CUDA support for faster training. We report the
average inference time taken to disaggregate a single sample on
a Raspberry Pi 3 Model B as our edge device. In order to simulate
the disaggregation performance in realtime, we reported the time
taken to disaggregate a single sample. This Raspberry Pi device has
a 1.2 GHz CPU and 1 GB of RAM. We could not experiment with
other devices such as Arduino, Spartan Edge and several others
due to the lockdown restrictions in our country. However, we have
provided the number of floating-point operations (FLOPs) required
for doing disaggregation on a single sample. An individual who
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knows the specifications of a chip such as clock speed, number of
cores, number of CPUs, and the RAM size and the desired disaggre-
gation frequency can now look at the FLOPs provided in the table
to evaluate if a model is compatible with their chip.
Note about metrics: In the interest of space, we report the results
using F1-score for only a subset of the experiments.

Experiment 2: UK-DALE data set
UK-DALE dataset consists of data from five homes with mains
and appliance data collected at six-second intervals. We down-
sampled the original data to 60s sequences [3, 4]. We used the
data from the first six months for all the homes. We evaluate the
performance of the models on washing machine and fridge from
this data [4]. However, in the interest of space, we performed only
a subset of experiment 1 for the UK-DALE dataset. We train and
optimise an STL model using normal pruning (30%) and rank-8
tensor decomposition for this dataset. We use input windows of
length 99 and perform the above optimisations.

6 RESULTS
Result for Experiment 1: We now discuss the results of all our
models on the REDD dataset. Tables 4a, 4b and 5 show the perfor-
mance of models for all optimisation experiments on the REDD
dataset. The tables contain the error of each of models on the target
appliances, mean of the errors across all appliances, the time taken
for disaggregating a single sample on a Raspberry Pi 3, the total disk
space required for the models (all appliances), and FLOPS required
for disaggregating a single sample.

From Tables 4a and 4b, we observe and infer the following:
• The unoptimised (STL) models (Rows 1 and 19) for both sequence
lengths: 99 and 499 occupy significantly more space and take sig-
nificantly more time for inference compared to the compressed
models. For the sequence length 99, the unoptimised model occu-
pies >90x more space and requires >17x more inference time than
optimised STL models with similar performance (Rows 1 and 7)
in Table 4a. For the sequence length 499, the unoptimised model
occupies >100x more space and requires >25x more inference
time than optimised STL models with similar performance (Rows
19 and 25 in Table 4b).

• Pruning the unoptimised STL model significantly reduces the
model size along with providing huge inference time benefits
(Rows 1-7 and Rows 19-25). We observe that in some situations,
the pruned STL model performs better than the unoptimised STL
model (Rows 2, 3, 5, 7 and Rows 21 ). Previous work [11, 27]
shows that smaller amounts of pruning can sometimes increase
accuracy. This can be explained by the “regualarisation” effect of
pruning, where the less important weights are discarded.
Sometimes, the models with higher pruning percentages have
lowest mean test error (Row 3, and Row 21). This observation
can mainly be attributed to the presence of difficult to disaggre-
gate sparse appliances such as dishwasher and washing machine.
The models with higher pruning percentages predict more zeros
due to the limited number of parameters. Hence, they perform
well on MAE metric. We observe the F1-score for evaluating the
performance of these models as shown in Table 5, which shows
that the general performance decreases for the sparse appliances

when the pruning percentage is increased (Rows 38-40 and Rows
41-43). Hence, we can conclude that as pruning percentage in-
creases, the model performance slightly decreases (but needs to
be contextualised using appropriate metrics).

• The iterative models sometimes perform slightly worse than the
corresponding normally pruned models (Rows 2, 5 and Rows 4, 7
and Rows 20, 23 and Rows 22, 25). We have yet not been able to
reason this behaviour.

• We observe the general improvement in the disaggregation per-
formance of the tensor decomposition models with an increase in
rank (Rows 8-11 and Rows 26-29). As shown, the tensor decom-
position model rank 1 occupies lesser space as compared to that
occupied by all the other models, but rank 1 tensor decomposition
results in bad performance on the test set. Broadly, we expect bet-
ter performance with increasing tensor rank, till a certain point,
beyond which we would overfit. We can also observe a peculiar
case where a high rank model performs significantly worse than
the low rank model (Row 26, 27). We explain the reason for this
in the next section.

• The MTL model is approximately three times faster than the STL
unoptimised model (Rows 1, 12 and Rows 19, 30). This is expected
since the MTL architecture we used reduces the inference time
for dis-aggregating 𝑛 appliances by a factor of 𝑛. A similar pattern
can be observed for the size occupied by the model. Similar obser-
vations can be made for the pruned versions of MTL as well. In
the case of MTL, the error increases with an increase in pruning.
Although MTL and its pruning variants are faster than the cor-
responding STL models, their performance, in general, is worse
than the corresponding STL models. This is evident by the MAE
for the fridge and the F1-scores for the washing machine and
dishwasher. In the MTL model proposed, all the appliances use
the same set of features for the final prediction. It might be useful
to try another architecture or decrease the number of common
layers in the model to create a better MTL model.

• Washing machine and dishwasher contribute significantly less to
the overall consumption than the refrigerator in the dataset. Due
to this, the washing machine and dishwasher signals may get lost
in the mains readings as noise. Also, these appliances are not as
frequently used as the fridge. Hence, it is hard to disaggregate
the readings for washing machine and dishwasher. These factors
explain the poor F1-score results obtained in Table 5. The low
F1-score of sparsely used appliances is a known phenomenon
in the NILM literature [3].Interestingly, we can see from Table 5
that the F1-scores are generally better for pruned models. This
indicates that the unoptimised models might be over-fitting and
pruning helps in “regularisation”.

• We also observe that there is some difference between space oc-
cupied by the models that are pruned normally and the models
pruned iteratively (Rows 2, 5 and Rows 3, 6 and 4, 7 and . . . ). When
a model is pruned iteratively, in the first dense layer, 103 (10%)
neurons are pruned at one go, which removes 309 neurons for
reaching 30% pruning. In contrast, the normally pruned model
removes 308 (30%) neurons at one go. This extra neuron in the
normally pruned model is the reason for the difference in the
space occupied.

Results for Experiment 2: UK-DALE data set
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Row Model Name Dish w. Washing m. Fridge Mean Error Runtime (ms) Model size (MB) Total MFLOPs

1 STL Unoptimised 13.91 23.83 40.72 26.15 174.62 41.48 19.27
2 STL Iterative Pruning (30%) 13.84 21.47 41.49 25.60 139.25 20.37 9.49
3 STL Iterative Pruning (60%) 13.10 21.03 40.10 24.74 115.62 6.69 3.14
4 STL Iterative Pruning (90%) 13.04 27.05 51.13 30.41 10.46 0.44 0.21
5 STL Normally Pruning (30%) 14.25 22.50 39.27 25.34 135.73 20.32 9.47
6 STL Normally Pruning (60%) 12.58 30.41 40.95 27.98 114.54 6.64 3.13
7 STL Normally Pruning (90%) 14.00 19.15 42.42 25.19 10.22 0.43 0.21
8 STL Rank 1 Tensor D. 17.50 30.07 68.38 38.65 21.07 0.11 0.21
9 STL Rank 2 Tensor D. 14.50 28.14 41.24 27.96 26.20 0.16 0.32
10 STL Rank 4 Tensor D. 15.27 22.50 40.54 26.10 32.67 0.28 0.53
11 STL Rank 8 Tensor D. 16.04 24.11 38.54 26.23 45.37 0.50 0.95
12 MTL 20.54 35.20 40.08 31.94 60.17 13.84 6.42
13 MTL Iterative Pruning (30%) 20.34 37.63 42.36 33.44 46.03 6.80 3.16
14 MTL Iterative Pruning (60%) 17.90 36.39 41.34 31.87 38.52 2.24 1.05
15 MTL Iterative Pruning (90%) 17.08 30.60 58.32 35.33 4.24 0.15 0.07
16 MTL Normally Pruned (30%) 20.43 33.79 40.48 31.57 46.10 6.78 3.16
17 MTL Normally Pruned (60%) 23.29 38.21 39.34 33.61 38.62 2.22 1.04
18 MTL Normally Pruned (90%) 18.58 39.20 61.98 39.92 4.34 0.15 0.07

(a) Mean absolute error (MAE (lower is better)) of the edge algorithms on the REDD dataset with sequence length 99.

Row Model Name Dish w. Washing m. Fridge Mean Error Runtime (ms) Model size (MB) Total MFLOPs

19 STL Unoptimised 18.01 27.80 40.57 28.79 503.66 275.85 125.86
20 STL Iterative Pruning (30%) 18.23 93.23 40.26 50.57 245.68 135.41 61.96
21 STL Iterative Pruning (60%) 18.07 22.52 40.25 26.95 172.86 44.41 20.46
22 STL Iterative Pruning (90%) 20.97 34.33 52.63 35.97 17.60 2.87 1.38
23 STL Normally Pruning (30%) 19.24 35.82 41.04 32.03 245.49 135.03 61.86
24 STL Normally Pruning (60%) 18.95 24.28 41.80 28.34 177.37 44.09 20.38
25 STL Normally Pruning (90%) 17.05 22.89 54.53 31.49 17.42 2.76 1.35
26 STL Rank 1 Tensor D. 17.19 35.74 63.62 38.85 36.40 0.34 1.21
27 STL Rank 2 Tensor D. 16.61 107.56 53.68 59.28 42.33 0.62 1.84
28 STL Rank 4 Tensor D. 19.95 20.02 40.87 26.95 51.60 1.19 3.10
29 STL Rank 8 Tensor D. 20.36 37.19 39.55 32.36 70.93 2.33 5.61
30 MTL 23.08 31.28 41.25 31.87 169.94 91.96 41.96
31 MTL Iterative Pruning (30%) 28.06 26.75 42.02 32.28 78.70 45.14 20.65
32 MTL Iterative Pruning (60%) 15.09 55.65 43.31 38.02 48.24 14.81 6.82
33 MTL Iterative Pruning (90%) 24.52 35.64 56.35 38.84 6.16 0.96 0.46
34 MTL Normally Pruned (30%) 26.57 33.87 42.46 34.30 82.63 45.02 20.62
35 MTL Normally Pruned (60%) 17.21 25.73 41.90 28.28 56.58 14.70 6.79
36 MTL Normally Pruned (90%) 23.85 35.66 48.13 35.88 6.52 0.92 0.45

(b) Mean absolute error (MAE (lower is better)) of the edge algorithms on the REDD dataset with sequence length 499.

Table 4: Performance of edge algorithms on REDD dataset using mean absolute metric.

Table 6 shows the performance of the models on the UK-DALE
dataset. The results of compressed models are similar to the unop-
timised STL w.r.t error. The reduction in predictive performance
seems lower compared to the REDD dataset. Thus, we can say that
the proposed algorithms are dataset independent and can work for
general use cases of NILM. The inference time, model size, and the
FLOPS will be similar to those in Table 4a. The only difference in
these numbers arises due to the change in the number of disaggre-
gated appliances. We have not reported these numbers explicitly

here in consideration of space. It should also be noted that (as dis-
cussed in the results for the REDD dataset) the caveats associated
with a highly compressed model would be to produce an always
OFF prediction for a sparsely used appliance, which would perform
well on the MAE metric, however, would be performing poorly on
the F1-score metric.
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Row Model Name DW WM Fridge

37 Unoptimised 0.22 0.13 0.74
38 Iterative Pruning (30%) 0.26 0.27 0.74
39 Iterative Pruning (60%) 0.25 0.18 0.74
40 Iterative Pruning (90%) 0.17 0.18 0.64
41 Normally Pruning (30%) 0.23 0.19 0.74
42 Normally Pruning (60%) 0.21 0.23 0.74
43 Normally Pruning (90%) 0.15 0.24 0.72
44 Rank 1 Tensor D. 0.12 0.00 0.59
45 Rank 2 Tensor D. 0.13 0.18 0.74
46 Rank 4 Tensor D. 0.15 0.17 0.77
47 Rank 8 Tensor D. 0.11 0.23 0.76
48 MTL 0.08 0.02 0.76
49 MTL Iterative Pruning (30%) 0.02 0.08 0.72
50 MTL Iterative Pruning (60%) 0.04 0.16 0.74
51 MTL Iterative Pruning (90%) 0.04 0.06 0.63
52 MTL Normally Pruned (30%) 0.05 0.02 0.75
53 MTL Normally Pruned (60%) 0.06 0.05 0.76
54 MTL Normally Pruned (90%) 0.10 0.20 0.64

Table 5: F1-Score (higher is better) of the proposed algo-
rithms on the REDD dataset with sequence length 99 .∗DW
indicates dish washer and WM indicates washing machine

Model Name Washing m. Fridge Mean error

STL Unoptimised 31.29 26.41 28.85
STL Normally Pruned 31.49 26.60 29.04
(60%)
STL Rank 8 Tensor D. 33.07 26.65 29.86

Table 6: Mean absolute error (MAE (lower is better)) compar-
ison of compression algorithms on UK-DALE dataset with
sequence length 99

7 ANALYSIS AND EXTENSIONS
We now perform additional experiments to further understand the
effect of various components in our compression strategies.

7.1 Filter Pruning v/s Neuron Pruning
We first study the impact of pruning on two different types of lay-
ers in the Seq2Point model: the convolution layer and the dense
layer. We chose the sequence length 99 unoptimised model and
compared the unoptimised model with three models: i) 30% filter
pruning; ii) 30% neuron pruning, and iii) 30% filters and neuron
pruning. From Table 7, we observe the reduction in the number
of computations when we prune the convolution layers and the
dense layers. The model in which only the convolution layers are
pruned has fewer FLOPS than the one with only dense neurons
pruned. This is because of two reasons: 1) The number of convolu-
tion operations performed has decreased significantly in the first
case. 2) The weights matrix in the first dense layer got smaller due
to the removed filters in the last convolution layer. The latter is
also why the convolutions layers pruned model and dense layers

pruned model have similar model sizes. We find that the model
that combines both filter and neuron pruning performs the best in
terms of disaggregation performance, model size and FLOPS.

7.2 Sample-wise Prediction v/s Batch
Prediction

In Table 4a and 4b, we reported the time taken for a model to
disaggregate a single sample. When we have multiple samples, we
can either predict one sample after another or make the predictions
in batches. Often it is faster to predict in batches. We vary the batch
size and report the inference time for two models with sequence
length 99. Table 8 shows the total time taken to disaggregate 1024
samples. This evaluation helps us decide if we need to store the
multiple readings and predict them in a batch or if we need to
predict as soon as we receive a reading. We can observe that there
is not much difference in the inference time with the increase in
batch size for compressedmodels. Whereas for the STL unoptimised
model, we can observe the differences in inference time caused by
increasing the batch size. This result is important in the context of
real-time processing.

8 LIMITATIONS
We now discuss three important limitations of our work.

(1) We pruned and decomposed uniformly across layers. The pruning
percentage or rank of decomposition can depend on the impor-
tance of the layer to the final predictions. In the case of MTL,
when the number of non-shared layers is higher, the percentage
of pruning or decomposition can be different across the branches
and different for the shared layers.

(2) We have not explored the other compression techniques such as
weights sharing [28], weights clustering [26], and others.

(3) Raspberry Pi has multiple CPUs and multiple cores, hence it
can use parallelism for predicting faster. Whereas, a resource-
constrained edge device might not have multiple CPUs for gener-
ating the predictions. Hence, we reported the number of FLOPs
for every optimization technique we have applied so that people
with expertise in microprocessors and chips can decide if a model
satisfied their requirements.

9 FUTUREWORK
Our future work can be summarised along three main threads:

(1) We plan to optimise different NILM neural architectures. Various
NILM models use RNN and LSTM based models, which would
require a different suite of compression techniques.

(2) We plan to explore combining multiple techniques such as tensor
decomposition with pruning.

(3) Though the definition of optimal remains the same, the solution
can be different for different edge devices due to differences in
computation power. Extensive experimentation needs to be done
to find suitable solutions for standard edge devices like Arduino
UNO, Sparkfun Edge, Raspberry Pi Zero.

10 CONCLUSION
Various neural network-based NILM models have been proposed in
the recent past. However, thesemodels have a high computation and
memory footprint, making them ill-suited for edge devices. Given
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Model Name Dish w. Washing m. Fridge Mean Error Runtime (ms) Model size (MB) Total MFLOPs

STL Unoptimised 13.91 23.83 40.72 26.15 174.62 41.48 19.27
STL Filters Pruning (30%) 12.42 22.96 41.46 25.61 156.58 28.96 11.74
STL Neurons Pruning (30%) 14.00 23.69 40.41 26.03 149.35 29.14 16.03
STL Normal Pruning (30%) 14.25 22.50 39.27 25.34 135.73 20.32 9.47
(Filter+Neuron pruning)

Table 7: Mean absolute error (MAE (lower is better)) comparison of unoptimised STL model with i) filter pruning; ii) neuron
pruning; iii) both filter and neuron pruning

Model Name Batch Size Inference time (s)

STL Unoptimised 1 182.06
STL Unoptimised 128 36.71
STL Normally Pruned (90%) 1 11.22
STL Normally Pruned (90%) 128 7.91

Table 8: Variation of inference time of 1024 samples with
respect to testing batch size

the privacy concerns around disaggregated energy data and non-
trivial data transmission costs, disaggregation on edge devices is an
important problem. In this paper, we presented various techniques
to compress the state-of-the-art neural network-based NILM model
and found that we can compress themodel by a factor of 100without
impacting predictive performance. We believe that efforts in this
direction could push the case of per-home energy disaggregation.
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