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Abstract

Air pollution is a leading global health threat, yet many de-
veloping countries lack the dense monitoring infrastructure
needed for accurate exposure assessment and informed pol-
icy. Optimal Sensor Placement (OSP) is a foundational chal-
lenge in expanding monitoring capacity. While mutual infor-
mation (MI) offers a principled criterion for selecting infor-
mative sensor locations, its computational cost grows with
both the number of placements and the density of the can-
didate grid. We present a scalable, continuous optimization
framework that treats sensor coordinates as differentiable pa-
rameters and directly maximizes MI. Unlike standard ap-
proaches, our method is computationally efficient—its run-
time is independent of both the number of placements and the
size of the search grid—making MI-based acquisition feasi-
ble over large spatial domains. On a continental-scale PMa 5
dataset, our method outperforms random placement and the
widely-used Maximum Predictive Variance heuristic. In a fo-
cused regional study, it approaches the performance of greedy
MI while being orders of magnitude faster. Our framework
enables practical, information-theoretic sensor placement for
real-world environmental monitoring.

Code — https://github.com/sustainability-lab/gdmi-aqs

Introduction

Air pollution is one of the most urgent public health chal-
lenges of our time. According to the World Health Organi-
zation (WHO), over 99% of the global population breathes
air that exceeds recommended pollutant thresholds (World
Health Organization 2024). A central tenet of environmen-
tal policy is that we cannot manage what we do not mea-
sure. Yet in many developing countries, the lack of ground-
based monitoring infrastructure poses a fundamental barrier
to both exposure assessment and effective intervention.
India exemplifies this challenge. Despite a population
exceeding 1.4 billion, the country operates only around
500 official monitoring stations (Central Pollution Control
Board 2025). Without high-resolution local data, policymak-
ers lack the evidence needed to design targeted public health
interventions. To address this measurement gap, recent work
has explored using machine learning to estimate pollution
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levels in unmonitored regions (van Donkelaar et al. 2016).
However, the accuracy of these models depends critically on
the spatial distribution of the sensors. This raises a founda-
tional question: where should new sensors be placed to max-
imize predictive performance and minimize error? Given
the high cost of regulatory-grade stations, universal deploy-
ment is economically unfeasible. As a result, Optimal Sen-
sor Placement (OSP) has emerged as a core problem in data-
driven environmental science.

Principled methods grounded in information theory, such
as maximizing mutual information (MI) between selected
sensors and the unobserved field (Krause, Singh, and
Guestrin 2008), can yield high-quality placements. How-
ever, MI-based acquisition requires a look-ahead evaluation
at each candidate site to estimate potential information gain,
making its runtime scale linearly with the number of can-
didates—a bottleneck in large domains. On the other hand,
lightweight heuristics like greedy selection based on predic-
tive variance offer scalability but sacrifice accuracy. These
often result in spatial clustering or redundant placements, as
they fail to account for interactions among sensors. More-
over, such methods frequently place sensors along domain
boundaries where model uncertainty is artificially inflated
due to extrapolation, further degrading the quality and cov-
erage of the monitoring network.

In this work, we propose a method that directly ad-
dresses the trade-off between accuracy and scalability in
sensor placement. We recast the discrete selection problem
as a continuous optimization task, enabling gradient-based
search over sensor coordinates. This formulation resolves
two core limitations of prior work. First, by treating sensor
locations as differentiable parameters, our approach avoids
evaluating every candidate site and scales independently of
grid resolution—making mutual information (MI) acquisi-
tion tractable in large spatial domains (Krause, Singh, and
Guestrin 2008). Second, unlike greedy or distance-based
heuristics that select sensors sequentially (Sun et al. 2025),
we jointly optimize the full batch of new placements. This
enables the model to account for spatial correlations and re-
dundancy across sensors, resulting in more informative and
geographically balanced monitoring networks.

We validate our approach on a continental-scale reanaly-
sis dataset of surface-level PMs 5. Our method consistently
outperforms the widely-used Maximum Predictive Variance



heuristic, achieving a 4% reduction in predictive RMSE.
Compared to classical mutual information (MI)-based se-
lection, it is orders of magnitude faster while delivering
competitive placement quality.

This combination of accuracy and scalability yields a
practical tool for designing high-impact air quality moni-
toring networks that better support public health decision-
making.

Related Work

Classical Sensor Placement: Information Theory
and Submodularity

Classical approaches to Optimal Sensor Placement (OSP)
are rooted in information theory and have traditionally re-
lied on probabilistic surrogate models like Gaussian Pro-
cesses (GPs). GPs are prized for their ability to provide well-
calibrated uncertainty estimates, making them a natural fit
for model-based placement strategies (Williams and Ras-
mussen 2006). Within this framework, a dominant paradigm
is to select locations that maximize an information-theoretic
criterion, such as the mutual information (MI) between the
selected sensors and the unobserved field. A key theoretical
breakthrough was the proof that the MI objective is submod-
ular. This property allows a simple greedy algorithm to find a
near-optimal set of sensor locations with strong performance
guarantees (Krause, Singh, and Guestrin 2008).

However, these methods have significant computational
limitations. Standard GPs require inversion of large covari-
ance matrices, resulting in cubic time complexity (O(N?3)).
Moreover, evaluating the MI acquisition function requires
look-ahead computations at each candidate location to as-
sess the marginal gain in information. As a result, the to-
tal runtime scales linearly with both the number of candi-
date sites and the number of placements. This makes classi-
cal MI-based approaches impractical for high-resolution or
large-scale domains such as continental air quality monitor-
ing, motivating the development of more scalable alterna-
tives.

Modern Learning-Based Approaches

The scalability issues of classical methods have motivated a
shift towards modern, data-driven strategies for OSP. Many
approaches frame the problem as active learning, where a
model iteratively queries for sensor data at the most infor-
mative locations to improve its performance (Settles 2009).
More recently, meta-learning has emerged as a powerful
paradigm (Finn, Abbeel, and Levine 2017). Models like
Neural Processes (NPs) are trained across a wide distribu-
tion of tasks (e.g., different pollution fields) to learn an effi-
cient placement strategy that can rapidly adapt to new en-
vironments from only a few observations (Garnelo et al.
2018b). This NP-based approach has been successfully ap-
plied to environmental sensor placement using sophisticated
variants like Convolutional Gaussian Neural Process (Con-
vGNP) (Andersson et al. 2024).

However, a common limitation of these strategies is
their reliance on discrete, sequential selection policies. The
learned policies can be sensitive to the training distribution

and are typically non-differentiable, preventing the direct,
joint optimization of an entire batch of sensor locations at
once.

Domain-Specific Work: Air Quality Monitoring

Finally, our work is situated within the specific domain of
air quality monitoring, where sensor placement has signifi-
cant societal implications. A large body of research has fo-
cused on forecasting air quality using deep learning, lever-
aging spatiotemporal models to predict pollutant concentra-
tions (Xing et al. 2020). In parallel, a number of studies
have addressed OSP for air quality, often focusing on spe-
cific urban areas and using methods like greedy selection or
land-use regression to inform placements (Chang-Silva et al.
2024).

Recognizing the social dimensions of monitoring, a grow-
ing and vital area of research focuses on equitable placement
strategies. These works aim to design networks that explic-
itly address environmental justice concerns by prioritizing
coverage in vulnerable or historically underserved commu-
nities (Holstein et al. 2019).

However, these domain-specific approaches are typically
limited by framing sensor placement as a discrete selection
problem solved with suboptimal, greedy methods. Many ex-
isting methods are designed for smaller, city-scale problems
and do not scale to continental-level domains, nor do they
offer a mechanism to find the jointly optimal set of locations
that maximally improves the overall predictive accuracy.

Problem Formulation

Let X, and Y. denote the locations and corresponding obser-
vations of the existing sensors. Given a deployment budget
of k additional sensors to be selected from a candidate pool
Xpool With cardinality | Xpo01| = 7, the objective is to iden-
tify a subset of locations Xpew C Xpool, With [Xpew| = &
minimizing a prescribed acquisition function defined over a
target set of locations X;.

Methodology

The optimization objective defined in the previous section
involves selecting an optimal set of £ new sensor locations
from the pool X, resulting in a combinatorial search

space of size (‘X]";““). Exploring this space exhaustively
is computationally infeasible for any real-world deploy-
ment (Guestrin, Krause, and Singh 2005). To overcome this,
we recast sensor placement as an active learning problem
and adopt uncertainty sampling as our acquisition strategy,
in line with prior work that has leveraged uncertainty-driven
heuristics for sensor selection (Andersson et al. 2024). This
approach prioritizes adding sensors in regions where the
model is least confident, under the assumption that predic-
tive uncertainty correlates with the potential generalization
error.

A greedy naive placement of sensors based on maximum
uncertainty fails to account for interaction effects between
sensor locations and can lead to suboptimal joint config-
urations (Krause, Singh, and Guestrin 2008). Instead, we



jointly optimize all k sensor positions. This requires a sur-
rogate model that produces principled uncertainty estimates
over the entire spatial field.

To meet these requirements, we employ Neural Processes
(NP) (Garnelo et al. 2018b) as our predictive model. NPs
combine the flexibility of neural networks with the abil-
ity to produce coherent predictive distributions over func-
tions, making them particularly well suited for data-efficient
learning in spatiotemporal domains. This section details our
modeling choices, acquisition strategies, and training proce-
dures.

Neural Processes

Neural processes (NP) are a family of meta-learning mod-
els that combine the flexibility and scalability of deep neu-
ral networks with the principled uncertainty quantification
traditionally provided by Gaussian processes. At their core,
NPs learn to map a set of observed inputs and outputs
(context) (X, Y.) to a full posterior predictive distribution
over a set of unlabelled points (target) (X;). By training
across many functions (in our case, monthly PM; s fields),
NPs learn an amortized inference procedure that can rapidly
adapt to new spatial patterns from only a sparse set of sensor
readings, making them especially suited for data-efficient,
active learning tasks. Crucially, unlike deterministic mod-
els, NPs provide coherent predictive variances that reflect
both model and data uncertainty, enabling principled sensor
selection via uncertainty-driven acquisition functions. This
rich combination of accuracy and uncertainty quantification
establishes NP as an ideal surrogate for our placement task.
Our methodology therefore begins with a rigorous empirical
benchmark, comparing several NP variants against classical
and deterministic baselines to identify the most robust model
for our active learning pipeline.

Surrogate Model Benchmarking

To this end, we conducted a comprehensive benchmark of
diverse modeling approaches—including classical baselines
like Gaussian Process, deterministic regressors, and multi-
ple variants of Neural Processes (NPs) —on the WUSTL
PMs 5 dataset (Shen et al. 2024). All models were evalu-
ated on their ability to predict held-out PMs 5 concentra-
tions over a strictly chronological validation set, a standard
practice for mitigating information leakage in spatiotem-
poral modeling (Andersson et al. 2024). We used Nega-
tive Log-Likelihood (NLL) to assess uncertainty calibration
and Root Mean Square Error (RMSE) for predictive accu-
racy. Among all contenders, the Diagonal Transformer Neu-
ral Process (TNP-D) (Nguyen and Grover 2023) delivered
the strongest performance on the validation set. Its ability to
combine strong predictive accuracy with well-calibrated un-
certainty estimates makes it a highly robust candidate. Con-
sequently, on the basis of its superior validation metrics, we
adopt TNP-D as the surrogate model for all subsequent ex-
periments. The complete benchmark results, model details,
and implementation specifics are provided in .

Sensor Placement Acquisitions

In this section, we formally define the employed acquisi-
tions for sensor placements. We begin by introducing stan-
dard baseline strategies used for comparison, followed by
our proposed gradient-based method for jointly optimizing
sensor placements.

Maximum Variance (MaxVar) This is a greedy,
uncertainty-driven heuristic. In each step, it selects the
single location from the pool of candidates (X,,,) with
the highest predictive variance, conditioned on the set of
already placed sensors (X.). The selected location is:

z),, = arg max Var(y|z, X.,Y.) (1)
o ZI/’EXI,OO;
This location is then added to X, and the process is re-
peated.

Random Placement For this baseline, new sensor loca-
tions are selected by sampling uniformly at random and
without replacement from the pool of valid candidate loca-
tions, X,,,,;. This strategy serves as a lower-bound on per-
formance and helps quantify the gains achieved by more in-
telligent placement methods.

Mutual Information (MI). A principled strategy for ac-
tive sensor placement is to select the location that maximizes
the expected reduction in predictive uncertainty over the tar-
get region. This corresponds to maximizing the Mutual In-
formation (MI) between the new observation and the unob-
served target outputs. Formally, the new sensor locations are
selected by solving:

Xiew = arg  max H[Y; | X, Y]
new pool (2)

- H[Yi | Xca Yca Xnew7 Yhew}

where H(-) denotes entropy, and Yyew refers to the predicted
measurements at candidate points (used for a look-ahead es-
timate).

While theoretically appealing, computing this objective
for every candidate subset X, is combinatorial and there-
fore computationally infeasible. In practice, this objective is
approximated with “greedy MI” which greedily selects the
next candidate until k candidates are selected. Owing to the
submodularity of mutual information, this greedy strategy
is guaranteed to achieve at least a (1 — 1/e)-approximation
(approx 63%) of the optimal solution (Krause, Singh, and
Guestrin 2008). Nevertheless, even this greedy approach re-
mains computationally intensive, especially in large-scale
domains such as all of India. Hence, we evaluate the greedy
MI only in a focused regional case study and treat it as a
strong but computationally expensive baseline.

Gradient Descent Mutual Information (GD-MI)

Our proposed placement strategy directly optimizes the co-
ordinates of a batch of k new sensors, Xpew = {21, ..., 2k},
with the objective of approximating the mutual information
criterion introduced in Eq. 2. This approach treats the sen-
sor locations themselves as trainable parameters within an
optimization loop. The acquisition function is based on a



look-ahead procedure that estimates the expected reduction
in future uncertainty. Since the true ground-truth observa-
tions at the proposed new locations are unknown, we must
approximate the expected information gain. We do this by
first imputing the likely sensor readings at those locations.
These imputed values, Ynew, are the model’s mean predic-
tions conditioned on the currently existing sensors (X, Y2):

Y;lew = E[Y|Xnew>Xc;ch] (3)

This use of the predictive mean is a standard technique in
active learning, serving as a computationally tractable ap-
proximation for the full integral over the predictive distribu-
tion. It allows us to simulate the state of our knowledge after
a new sensor is placed by using the model’s own predictive
mean as an estimate of what that sensor will observe. We
then form a hypothetical, augmented context set,

Caug == (Xr U XneW7 Yc U }A/new)

The primary objective, Ly,;, is to minimize the expected pre-
dictive variance across the entire target set, Xy, conditioned
on this augmented context:

Evar(Xnew) - ]E:CtEXf, [Var(yt‘caug)] (4)

A key challenge in unconstrained optimization is that the
sensor coordinates may drift into invalid locations (e.g.,
oceans). To address this, we introduce a differentiable out-
of-region penalty, Loor, Which grows exponentially as a
point moves away from the valid land grid.

K

Coo(Xoew) = Y~ |exp (ReLU (i [xi2, ~xla ~5) ) 1]

=1
5)
Here § is the difference between any neighboring grid
points. The final objective is the following:

E(Xnew) = Lvar(Xnew) + EOOR (Xnew) (6)

The locations in X,y are initialized from the pool of loca-
tions Xp01, and their positions are updated iteratively using
the Adam optimizer (Kingma and Ba 2017). This end-to-
end, gradient-based approach allows the model to account
for complex interaction effects between all k new sensor lo-
cations simultaneously. Since the other baseline methods se-
lect from a discrete set of grid points, for a fair comparison,
the final continuous coordinates found by our method are
snapped to the nearest grid point in X, for evaluation.

Experiments and Results
Dataset and Preprocessing

Following prior work that leverages global reanalysis data
for air quality modeling and sensor placement research (An-
dersson et al. 2024), we use the monthly surface-level
PM,s dataset from Washington University in St. Louis
(WUSTL) at a 0.1° spatial resolution. This dataset inte-
grates satellite aerosol optical depth (AOD) retrievals, chem-
ical transport model outputs, and ground-based monitoring
observations using Gaussian process regression to produce
globally consistent P M s estimates. We focus on a regional

subset covering the Indian subcontinent, spanning latitudes
[5°,39°] and longitudes [67°,99°]. To eliminate oceanic re-
gions, we apply a land mask and retain only grid points over
land. We use data from January 1998 to December 2018 to
construct a temporally rich dataset, capturing seasonal and
interannual variability while avoiding distortions from the
COVID-19 pandemic period.

To ensure a realistic and temporally coherent evaluation
setting, we partition the dataset chronologically: the training
set spans January 1998 to December 2008, the validation set
includes January 2009 to December 2010, and the test set
covers January 2011 to December 2018. This forward-in-
time split mitigates information leakage and better reflects
the deployment scenario of learning from historical data
to inform future predictions. For preprocessing, raw PM; s
concentrations are log-transformed to reduce skewness and
then standardized to have zero mean and unit variance. This
transformation stabilizes model training and ensures consis-
tency across different spatial and temporal contexts. The re-
sulting processed dataset serves as input to all neural process
models evaluated in this study. Further implementation de-
tails, including masking and interpolation routines, are pro-
vided in supplementary material.

Surrogate model Evaluation and Selection

As established in our methodology, the foundational step of
our approach is the selection of a robust surrogate model.
This section provides the detailed experimental setup and
comparative results from the comprehensive benchmark
used to make this selection.

Training and Evaluation. We evaluated the models on
two primary metrics: Root Mean Square Error (RMSE) for
predictive accuracy and Negative Log-Likelihood (NLL)
for uncertainty calibration. All neural models were im-
plemented in PyTorch and trained with early stopping
based on validation NLL. Following the meta-learning
paradigm (Finn, Abbeel, and Levine 2017), each training it-
eration involved sampling a random monthly snapshot from
the training set and constructing a new task by randomly se-
lecting 700 context points and 5,000 target points. The final
performance was evaluated on the held-out validation and
test sets. Further implementation details such as optimizer
and hardware are provided in the supplementary material.

Results. The complete performance metrics for all bench-
marked models are presented in Table 1 (Validation) and
Table 2 (Test). The validation results reveal a clear perfor-
mance hierarchy. Purely deterministic methods like Random
Forest serve as strong RMSE baselines. The classical Gaus-
sian Process (GP) performs well but suffers from cubic scal-
ing complexity that limits its practicality for large-scale ap-
plications (Titsias 2009). Among the Neural Process family,
performance scales with architectural complexity: the basic
Conditional NP (CNP) (Garnelo et al. 2018a) is significantly
outperformed by attentive (CANP) (Kim et al. 2019) and
convolutional variants. Notably, both the ConvCNP (Gordon
et al. 2020) and the ConvGNP (Andersson et al. 2024)—
which models a full covariance—show strong performance,
demonstrating the power of convolutional architectures for



Model NLL ({) RMSE ({)
CNP 0.48 £0.00 11.46 +0.09
Random Forest -0.11 £ 0.00 6.55 +0.08
Gaussian Process -0.19 4+ 0.00 5.16 = 0.08
CANP -0.19 £ 0.00 6.15 + 0.05
ConvCNP -0.27 £ 0.00 5.28 & 0.07
ConvGNP -0.30 £ 0.00 5.31 & 0.06
TabPFN -0.37 £ 0.00 5.09 £+ 0.05
TNP-D -0.44 £ 0.00 4.90 + 0.04

Table 1: Performance of various models on the validation
dataset spanning over 2009 and 2010. NLL = Negative
Log Likelihood (lower is better) and RMSE = Root Mean
Squared Error (lower is better)

Model NLL (J) RMSE ()
CNP 0.98 24.99
Random Forest 2.43 15.37
CANP 0.82 14.48
ConvGNP 1.04 12.25
TabPFN 0.39 11.23
ConvCNP 0.59 10.78
Gaussian Process 0.42 10.31
TNP-D 0.51 9.11

Table 2: Performance of various models on the test dataset.
NLL = Negative Log Likelihood (Iower is better) and RMSE
= Root Mean Squared Error (lower is better)

spatial data. However, the Transformer-based models, in-
cluding the pre-trained TabPFN (Hollmann et al. 2023) and
our task-trained TNP-D (Nguyen and Grover 2023), are the
decisive top performers. The TNP-D achieves the best over-
all result on the validation set, securing a 4% lower RMSE
(4.90vs.5.16 ,ug/m3) and a 57% lower NLL (-0.44 vs. -0.19)
than its closest non-pre-trained competitor, the GP. TabPFN,
used here in a zero-shot capacity without any fine-tuning,
also performs exceptionally well. The TNP-D’s architec-
ture, which assumes conditional independence between tar-
get points for faster, parallelized inference, is a highly effec-
tive modeling choice for this spatiotemporal task. Based on
its strong validation performance and scalability, we adopt
TNP-D as the surrogate model for all subsequent active
learning experiments. Since sensor selection relies heavily
on the quality of uncertainty estimates from the surrogate,
TNP-D’s superior calibration, as demonstrated by its low
NLL, is particularly crucial for our active learning pipeline.

Case Study: Benchmarking Against a Strong
Heuristic

To benchmark our method’s accuracy against the power-
ful but computationally expensive Mutual Information (MI)
heuristic, we conducted a focused case study. This experi-
ment was performed on the Madhya Pradesh region of India,
a geographical scope where the MI approach was computa-
tionally feasible. For this comparison, we used the existing
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Figure 1: Case study comparing placement effectiveness on
a regional subset. The plot shows the RMSE on the vali-
dation set as a function of the number of new stations de-
ployed. Our proposed GD-MI method is compared against
the computationally expensive Mutual Information (MI), the
greedy MaxVar method, and a Random baseline. While MI
achieves the lowest error, our GD-MI method is highly com-
petitive and consistently outperforms the other baselines.
The shaded regions for the stochastic methods (GD-MI and
Random) represent the interquartile range (25th to 75th per-
centile) over 5 independent runs.

Central Pollution Control Board (CPCB) sensor locations as
the initial context set (X.) (more details in supplementary
material). We compare our GD-MI approach against MI,
along with the MaxVar and Random baselines. The results,
shown in Figure 1, demonstrate the effectiveness of our
joint optimization approach. As expected given its theoret-
ical grounding, the greedy MI heuristic achieves the lowest
predictive error (RMSE of 5.6 at k=9), establishing a clear
performance benchmark. Crucially, our GD-MI approach is
highly competitive. For a budget of k=9 sensors, it achieves
an RMSE of 5.8, closing most of the performance gap with
the MI heuristic while consistently outperforming the sim-
pler MaxVar method (RMSE of 6.3). These findings suggest
that our approach achieves accuracy approaching that of the
powerful greedy method. This result is significant because it
shows that the substantial gains in computational efficiency,
which we demonstrate in the following section, do not come
at a major cost to deployment accuracy, making our method
a practical choice for real-world applications.

Sensor Placement Results

We now present the results of our primary experiment: a
full active learning pipeline deployed across the entire In-
dian subcontinent, starting from the existing Central Pollu-
tion Control Board (CPCB) sensor locations as the initial
context set (X.). This large-scale evaluation assesses perfor-
mance in a realistic, high-dimensional setting. We compare
our GD-MI method against the widely-used Max Var heuris-
tic and a Random baseline over 5 independent runs (with
fixed random seeds to ensure reproducibility). The test set
RMSE, as a function of newly deployed sensors, is shown in
Figure 2. The results demonstrate a clear performance hier-
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Figure 2: Main active learning results on the test set. The
plot shows the RMSE as a function of the number of new
stations added to the existing CPCB network across India.
Our GD-MI method is compared against the greedy Max Var
and a Random baseline. GD-MI consistently outperforms
the baselines, with the performance gap widening as the sen-
sor budget increases. Shaded regions represent the full min-
max range of results over 5 random initializations.

archy. Our GD-MI method yields a lower mean RMSE than
both the greedy MaxVar heuristic and the Random baseline
at nearly all budget sizes. The performance gain of GD-MI
grows with the budget size, suggesting its joint optimiza-
tion benefits become more pronounced in richer deployment
regimes where avoiding spatial redundancy is critical. At a
final deployment of 100 new stations, GD-MI achieves an
RMSE of approximately 7.1, a 4% relative reduction over
MaxVar’s 7.4. The non-overlapping error bars at this point
suggest this improvement is consistent. These results high-
light the practical utility of our approach for large-scale en-
vironmental monitoring tasks, demonstrating that joint opti-
mization leads to a more efficient network design and lower
overall predictive error than the widely-used Max Var heuris-
tic.

Qualitative Analysis

To provide an intuitive understanding of placement behavior,
we visualize the locations selected by the MaxVar heuristic
and our GD-MI method for a representative time slice from
February 1, 2012 (Figure 3). The analysis reveals clear dif-
ferences in the resulting network designs. The greedy Max-
Var strategy exhibits two suboptimal patterns. First, it cre-
ates dense spatial clusters by aggressively targeting high-
error regions. Second, it frequently places sensors along
the geographical boundaries, reducing effective inland cov-
erage. This combined behavior results in a redundant and
poorly distributed network. In contrast, our GD-MI method
produces a more spatially balanced and efficient network.
The joint optimization process naturally avoids both cluster-
ing and boundary-placement issues. It also learns to place
sensors away from existing CPCB stations, targeting unex-
plored regions to maximize new information. The resulting
placements provide superior geographical coverage, con-
firming that joint optimization leads to a more effective and
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Figure 3: Qualitative comparison of sensor placements on
2012-02-01. Red markers show sensors selected by GD-MI;
blue markers show those selected by MaxVar. Black dots
indicate existing CPCB stations. GD-MI yields better spatial
coverage, avoiding clustering and boundary bias common in
Max Var placements.

informative network design than a simple greedy approach.
Placements for other budget sizes exhibit similar patterns
and are included in supplementary material.

Discussion

Our results demonstrate that reframing sensor placement as
a continuous, gradient-based optimization problem can ef-
fectively overcome the longstanding trade-off between ac-
curacy and scalability. By jointly optimizing sensor coordi-
nates and decoupling runtime from the number of candidate
sites, our approach provides a practical solution for large-
scale air quality monitoring. The qualitative analysis further
shows that our method produces more spatially balanced
sensor configurations than greedy heuristics, mitigating is-
sues like clustering and boundary redundancy.

However, several limitations open avenues for future re-
search. A primary challenge is the sensitivity of gradient de-
scent to initialization, which can lead to convergence at sub-
optimal local minima. This could be mitigated by running
multiple optimizations with different seeds or by initializing
from a fast heuristic placement. Additionally, our current ob-
jective function minimizes predictive variance—a useful sta-
tistical proxy for information gain—but does not explicitly
consider equity or societal impact. Incorporating fairness-
aware criteria, such as prioritizing underserved or high-risk
populations, is an important extension. Finally, our method
currently optimizes for a fixed snapshot in time. Extending it
to a spatio-temporal setting, where sensors are dynamically
scheduled across space and time, is a promising direction for
increasing long-term robustness.



Despite these limitations, our work provides a strong
foundation for a new class of fast, differentiable sensor
placement algorithms. By making high-quality monitoring
network design computationally feasible at national and
continental scales, this approach opens up new possibili-
ties for scalable, data-driven environmental policy and pub-
lic health planning.

Conclusion

We address the trade-off between accuracy and scalability
in optimal sensor placement for air quality monitoring. Our
method reframes the discrete placement task as a contin-
uous optimization problem. By directly optimizing sensor
coordinates, we overcome the limitations of greedy heuris-
tics. Experiments on a continental-scale PM, s reanalysis
dataset show that our approach achieves high placement
quality while being orders of magnitude faster than tradi-
tional information-theoretic baselines. Unlike methods that
scale with the number of candidate sites, our runtime re-
mains constant, enabling efficient large-scale deployment.
This approach offers a practical tool for Al-driven social
impact, helping policymakers design more informative and
cost-effective monitoring networks. Future extensions could
incorporate fairness-aware or multi-objective criteria and ex-
plore joint spatiotemporal optimization.
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