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® The buildings sector, which includes residential and commercial structures,

accounts for almost 21% of the world's delivered energy consumption in 2015.

(International Energy Outlook 201 7)

® About 20% of the energy could be avoided with efficiency improvementst!!
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Sulldings

® The buildings sector, which includes residential and commercial structures,

accounts for almost 21% of the world's delivered energy consumption in 2015,

(International Energy Outlook 201 7)

® About 20% of the energy could be avoided with efficiency improvements!'.

Constructing efficient buildings

Retrofittin

CS@U.Va

High Cost
The return is unclear before installation.
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mprove Bullding Energy efficiency

* Behavioral and operational efficiency.
* Provide the more detailed energy feedback to customers.

Monthly bill Monthly bill

‘ YOUR NEIGHBORS
ARE DOING BETTER

6 % Drop in
Consumption
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mprove Bullding Energy efficiency

* Behavioral and operational efficiency.
* Provide the more detailed energy feedback to customers.
°* Energy Breakdown: provide per-appliance energy readings.

\‘

Save up to 15% energy!?l

Total energy consumption
e.g., monthly bills Total energy consumption Appliance energy consumption

m 1.5 kWh
+ Vﬁ‘ 6.3 KWh

[— o
E 0.9 kWh
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Selated VWork

e D | 3, 4]
Direct Sensing System Plug load monitor
® Instrument every appliance in each M

. ] I
Total energy consumption # “ 1 5 KWh
— P Expensive
iS¢ | B 63kWh Resource consuming
ﬁ 0.9 KWh Poor Scalability
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mart Sensor 1or each home.
ms: Steady/transit state analysis!
o A A v )
R
u 20F 30% 109 22%
%‘ 0% | 853 358 258
E 10% 158 18% 20%
o " Aggregate Source
5 5000 separation
O 2000

—elated Work
e Non-Intrusive Load Monitoring (NILM)

Active Collaborative Sensing for Energy Breakdown

Washing Machine mAC mFridge
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of FHMMIG: 71 Neural Network!8: ©l

Expensive
Resource consuming
Poor Scalability
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Selated VWork

e Collaborative Sensing!!9 1. 12l
e No additional hardware installation in test nomes.
e |ntuition:
e Common design and construction patterns for homes create a
repeating structure in energy data.

Months

Homes Home Season

« , Appliance-months
A m e Q Cactor | /‘ Factor Factor
| Homes w—> ‘
Appliances- —
Months Home Factor
= Appliance
V= Appliances\_ & Factor

Scalable Energy Breakdown!'°] Scalable Energy Breakdown Across Regions!'!]

N-YY:Y

'l
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e Collaborative Sensing!!9 1. 12l
e No additional hardware installation in test nomes.
e |ntuition:
e Common design and construction patterns for homes create a
repeating structure in energy data.

thha MAAA

R
Jan m 20 30% 10% 0%

-

.
Dec [l 258 35% | 15% 25%
Jan =— 1808 | — | 2508 3108 | 2008 | 25038 | 210%
Dec |izs| | 3508 | 3803 | 280% 480% | 2508 | — | 3508
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e Collaborative Sensing!!9 1. 12l
e No additional hardware installation in test nomes.
e |ntuition:
e Common design and construction patterns for homes create a
repeating structure in energy data.

m m @ ‘ ‘ ﬁ /ﬂ‘ | atent factor | atent factor
- for months for hnomes
Jan m 20% 30% 10% 0%
- a | e o A
! Jan ! 10 20, K1 1 °
R ' i
Dec [l 25% 35% 153 25% """""'"'""""""""""‘"b ‘ ! — B Ko
— .
Jan [=]] 1808 | — | 2508 3108 | 2008 | 250 | 2103 B
_Av‘v_?v‘ Jan ;5 22222
=4 =
Dec |2s| | 3508 | gsos | 2808 480% | 2508 | — | 350% =3
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Limitation of Collaborative sensing
® Assume the existence of relevant training data, i.e., appliance-leve
energy readings from some tully instrumented homes.

Few buildings in the world have instrumented with sub-meters.
High cost of sub-meters instrumentation.

tNaha MAAAA

R
[l ? 30% ?
=9 | 003 ? ?
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E 10$ ? 18% 20%
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Limitation of Collaborative sensing
® Assume the existence of relevant training data, i.e., appliance-leve
energy readings from some tully instrumented homes.

Few buildings in the world have instrumented with sub-meters.
High cost of sub-meters instrumentation.

Can we minimize the deployment cost by selectively deploying sensors to a
subset of homes and appliances while maximizing the reconstruction
accuracy of sub-metered readings in non-instrumented homes?

Active sensor deployment for energy breakdown
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Proplem Statement

Active Sensor Deployment for Energy Breakdown
® Define the energy readings as a three-way tensor.

Season Factor (S)
eo

G
et -
v a%l 7
__ 2,
o ® o,
O/n fS

—

555
v |

homes

CP decomposition
(rank decomposition)

Appliance Factor (A)

th
A

Home Factor (H)

Active Tensor Completion
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Special Properties of Energy Breakdown

* Time-series data | selected
® nergy data will be updated in every N appliances | home, appliance>

sampling cycle.

* Combinatorial decision
® Sclect the <home, appliance> pairs.

* Sensor Installation

® Once the sensor is installed, the readings |
will always be available thereafter.

® Diemma: balance the choice of
instrumentation that focuses on the
current reconstruction accuracy, and the
accuracy for future predictions.

Aggregate readings.
(from monthly bills)
CS@U.Va Active Collaborative Sensing for Household Energy Breakdown 14
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Active Selection

on WlHr Ce r n truction
e Uz‘a C;

Uncertainty based active selection. ﬁﬁw%?t tg 3 the uri /g rOm
uncer amty he most rapidly.
® Hardware.

The observed energy readings are noisy. Energy consumption in wire transition.

® Sub-meter readings.
For home I, appliance |, and month k

A Uncertainty in
obs __ i «-Uncertalnty in i
el]k el]knplse ? |

‘ : ener
--‘arameter .estlmatlon gy
E S

tsbie estimation
_ | [1hi = hy|| # 0
e;ix =X h;,a;, s, > "‘b -
Trie energy readlng [la; —aj|| # 0

approximate decomposition

ground trut ' ecomposition

x k%
eijk =< hi,aj,Sk >

N

[Isk — skll # 0

N

| = §
obs _—
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Uncertainty Quantification

How to quantify the uncertainty in parameter estimation ?

obs __ i A~ 2 \ Latent factor: h, a, s
el]k el]k I:\P'S’E?ijk nl]k N(O: 0 )

* In the tensor factorization, the objective function is:

obs 2 M T A /13 ‘
ZZ(el]k —< h;, a;, s >) +—Zh h; +—Za a; + Zsksk
k 11,] ] 1 2
* Parameter Estimation: Alternating Least Square (ALS)
N t
Home factor j; = Aztlbi,t Aj = nZuZl(ant osue)@neosye)’ +Ahie = 2 2 eini(Ang © Sie)
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Uncertainty Quantification

How to quantify the uncertainty in parameter estimation?

It can be proved that, with probability at least 1 =3 (Lemma 1 in paper)

“ A7 + |Q,|Q2R? 2P(2R?
I|h; — hi||,: < [rIn - /AP G, + G
l l Al N Al 1 6 \/_1 \//1—1 ( 2 3)
1 — | Qe
G1:f1(1_]}1 ) fi=qte
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Uncertainty Quantification

How to quantify the uncertainty in parameter estimation?

It can be proved that, with probability at least 1 =3 (Lemma 1 in paper)

t t ’ At_ * t
[Ih; —hi[],e < ap, \\af—a;\\c§ﬁaflj ISk = skllgt = as,

How the uncertainty in parameter estimation contributes to the uncertainty
in energy estimation?

Uncertainty of home factor, and appliance factor estimation.

N

e

|[hf o sl \(Ct)_l + const

Upper bound of paramé#’er

error
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Uncertainty Quantification

How to quantify the uncertainty in parameter estimation?
It can be proved that, with probability at least 1 =3 (Lemma 1 in paper)
b —billy i laf —ajlle < ah, ISk Silleg < @,

How the uncertainty in parameter estimation contributes to the uncertainty
in energy estimation?

Uncertainty(home;, appliance;, monthy)

CS@U.Va Active Collaborative Sensing for Energy Breakdown 19
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everage Iime Information

®* Sensor Installation
®Dilemma: balance the choice of instrumentation that focuses on the current
reconstruction accuracy, and the accuracy for tuture predictions.

Integrate temporal information to retrospect the history and foresee the future

t+p

(x,y) = argmaXxE[M],yE[N]k zt: Pr ¢ - Uncertainty(i, j, k)
=t—p

CS@U.Va Active Collaborative Sensing for Energy Breakdown 20
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—valuation: Iheoretical analysis

Prediction Error with data selected by our proposed method, Actsense, E, (t)
Prediction Error with any other data, E,(t)

't can be proved that,

/VUB(EA(t)) < UB(Ep(t))

Upper bound of the error

CS@U.Va Active Collaborative Sensing for Energy Breakdown 2
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—valuation: Setup

* Dataport: the largest public residential home energy dataset.
® Austin, 2014 (53), 2015 (93), 2016 (73), 2017 (44).
® Aggregate, HVAC, Fridge, Washing Machine, Dishwasher, Furnace, Microwave.

* Evaluation Metric 33 (6225 — e;1)?
‘ l L] l
® Root Mean Square Error (RMSE) for appliance a. RMSE(a) = N T,
Y oRMSE (a)
MeanRMSE =
® Mean RMSE for each model. N
CS@U.Va Active Collaborative Sensing for Energy Breakdown 22
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—valuation:

* Random Selection
® Perform CP decomposition with ALS
® Sclect L <home, appliance> pairs uniformly random from the candidates.
®* Query By Committee (QBC)!13: 14l;
® Perform CP decomposition with ALS.
® OBC guantifies the prediction uncertainty based on the level of disagreement
among a committee of trained models.
®\\Ve perform CP decomposition with different rank to form the committee.
Uncertainty i1Is computed by the variance across the estimate of the committee

members.

il UNIVERSITYo VIRGINIA

SAaseliNes

* Variational Bayesian - Variance (VBV)!15 1]
® Perform CP decomposition with Variational Bayesian Inference.
® Sclect the pairs based on the variance of each estimation.

CS@U.Va
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—Mmpirical evaluation

Quality of Energy Breakdown, Austin, 2015.

Select 5 pairs at each month.
At the end of the year, 10.75% <home, appliance> pairs are instrumented.

40 -

Bl ActSense
— 2y " i W
N
B Random -2 4. ‘
100~ mm VBV 2 — < e
c <
°0” o5 a0 35.06%
c>>'cc>w —A&— ActSense
60 - ST —604 —%— QBC
£ —8— Random
40 - “ —807 —m— vBv
c o 5 5 > £ S5 O c o2 5 5 > £ 5 992 o g = Uy
S ¢ s < 2 2 = Z g ¢ s < 2 2 =2 § o 2 A
Month Month
Mean RMSE performance across months Relative Improvement compared with random method
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—Mmpirical evaluation

Integrate temporal information

Table 2. Relative Improvement comparing to Random with different uncertainty estimation.

Uncertainty Estimation Maximum Mean

Current 34.38% 11.48%

Current + Future 34.89% 11.82%

History + Current + Future ‘§m35.06% 11.88% ]

Current Current + Future History + Current + Future
1.00 - - i - - i —
JHILL IR T LR T L

0.75 - T 7
0.50 - . .
0.25 - . .
0.00

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

HVAC Dishwasher B Microwave
Washing Machine Furnace Bl fridge
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—Mmpirical evaluation
Budget size, Austin, 2015.

2 Mean RMSE(t)

Year RMSE =
12
120 - —&— ActSense
— —8— QBC
5.;% 100 - —— Random
S Q —i— VBV
o v
E - 80 B
Q
Q
£ 3
- 60 -
50 =p === e o i e e e e .
40 - ) ) . |

|
| 1 ' 1
1 2 3 5 8 10 15 20
L: the number of new observations in each round
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summary

Proposed an active collaborative sensing algorithm to actively deploy
sensors for energy breakdown.
4 Utilize the uncertainty from the parameter estimation process to select
the candidates.
*\ntegrate the temporal information to retrospect the history and foresee
the future.
Provided rigorous theoretical analysis of the uncertainty reduction of the
proposed algorithm.

Future work
4 Active selection with budget constraint.
4 Active selection for transfer learning across regions.
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Thanks!

Q&A

GitHub: https://github.com/yilingjia/ActSense
CS@U.Va Active Collaborative Sensing for Energy Breakdown 31
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