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Non Intrusive Load Monitoring (NILM)

• Non-intrusive load monitoring is a task of estimating the power consumption
by the appliances given the aggregate power consumption.

NILM

Image Reference: https://www.flaticon.com/
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NILM toolkit

• NILM toolkit was created to enable reproducible NILM research.

• Provided baseline NILM algorithms.

• Multiple datasets in common format.
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State of the Art in NILM
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Contributions in the paper

• Implementation of five new neural networks for NILM task.

• Parser for publicly available IDEAL dataset.

• Empirical comparison of five proposed neural networks against state-
of-the-art implementations.
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Bidirectional Long Short-Term Memory (BiLSTM)

• BiLSTM considers the future readings of aggregate data along with
past while training and predicting the appliance reading.

LSTM BiLSTM

Image Reference:-https://www.researchgate.net/figure/LSTM-and-BiLSTM-Architectures_fig2_324769532
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BiLSTM Model with attention weights 

• Attention to each position of the aggregate signal, which can be linked to 
state-change of the target appliance. 

Image Reference:-https://www.researchgate.net/figure/LSTM-and-BiLSTM-Architectures_fig2_324769532

α:- Attention weights

BiLSTM Architecture 
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Residual Neural Network (ResNet)

• Skip connections preserve information of previous layer. 
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Classification Subnetwork

• Considers state of the target appliance along with regression subnetwork 
while training and testing.
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Bidirectional Encoder Representation from Transformer 
(BERT)

• BERT adds attention locally to the aggregate reading to understand the
context of the current window sequence.
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Parser For IDEAL Dataset

● IDEAL dataset contains data from 255 UK homes and among which 39
homes have appliance data.

● IDEAL dataset is largest publicly available dataset.

● The dataset parser is created using NILM metadata format.

● This dataset parser is contributed to open-source repo NILMtk for
simplified usage of NILM toolkit for IDEAL dataset
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DATASET REDD IDEAL

Sequence Length 99 99

Appliances Fridge, Dish 
Washer, 

Microwave, 
Washer Dryer

Fridge, Washer 
Machine

Metric Mean Absolute 
Error (MAE)

Mean Absolute
Error (MAE)

Experimental Settings

• Leave one home out cross validation.
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Analysis

• BiLSTM predicts accurately in comparison with baselines with some false 
positives.
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Limitations and Future Work

• Compared newly implemented algorithm on two dataset, we are trying to 
expand it on more number of datasets across different countries.

• Explanation for better performance of new models.
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Summary

• Implemented five new neural network algorithms for NILM task.

• Contributed dataset parser for IDEAL dataset.

• Qualitative and quantitative comparison of newly implemented algorithms 
with baseline.

• New neural networks performed comparable or better than the state-of-the-
art.
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Thank You!!
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