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Non Intrusive Load Monitoring (NILM)

Non-intrusive load monitoring is a task of estimating the power consumption
by the appliances given the aggregate power consumption.
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NILM toolkit

* NILM toolkit was created to enable reproducible NILM research.
* Provided baseline NILM algorithmes.

* Multiple datasets in common format.
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ABSTRACT

Non-intrusive load monitoring (NILM) or energy disaggregation
i the task of separating the household energy measured at the ag-
gregate level into constituent appliances. In 2014, the NILM toolkit
(NILMTK) was introduced in an effort towards making NILM re-
search reproducible. Despite serving as the reference library for
.h-. sct parsers and reference benchmark algorithm implementa-
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1 INTRODUCTION
Non-intrusive load monitoring (NILM) or energy disaggregation is

ting algorsthmic within
150 B went on b conite implementations back to the twolkit
“This paper describes two significant contributions to the NILM
community in an effort towards reproducible state-of-the-art re-
search: i) a rewrite of the disaggregation APl and 2 new experiment
APl which lower the barrier to entry for algorithm developers and
simplify the definition of algorithm comparison experiments, and
i) the elease of NILMTK-<ontrib. a pew repository containing
NILMTK-comp of 3 and 9 re-
cent disaggregation algorithms. We have performed an extensive
empirical evaluation using a number of publicly avaslable data sets
acruss thrce important experiment scenarios to showrase the ease
of performing reproducible research in NILMTK.
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the task of building s energ at the aggregate
level into constituent appli The problem iginally stud-
ied by Hart in the early 19805 [9] and has seen a renewed interest
in recent years owing to the availability of larger data sets, smart
meter rallouts, and amidst climate change concerns

Despite more than three decades of research in the field, three
factors primarily affected reproducibility, and therefore empirical
comparison of NILM algorithms: ) it was hard to assess generality
of NILM approaches as most works were evaluated on 3 single
data set, ) there was lack of comparison using the same bench-
marks due to the lack of availability of open-source benchmark
implementations, and til) different metrics were used based on the
use case under consideration. The open source non-intrusive load
monitoring twolkit (NILMTK) (3] was released in early 2014 against
this background to enable easy comparison of NILM algorithms in
a reproducible fashion. The main cantributions of the toolkit were
1) NILMTK-DF (data format): the standard energy disaggregation
data structure used by NILMTK; ii) parsers for six existing data
sets; i) implementations of two benchmark NILM algorithums. iv)
statistical and diagnostic functions for understanding data sets;
) a suite of accuracy metrics across a range of use cases. Later
i 2044, NILMTK v0.2 was released [12] which added support for
out-of-core computation, motivated by release of very lange data
wets such as Dataport data set (18]

Since these two releases. NILMTK has become the energy disag:
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fiekd's reference Wibrary for data set parsers and reference
benchmark algorithm implementations. However, few publications
presenting algorithmic contnbutions within the fiekd weat on to
contribute smplesentations back (o the toolkit. As 4 result. new

generally compare a novel algorithm with a baseline
benchmark algorithm tnstead of the state-of-the-art within the field
Consequently, it is still not possible to compare the performance of
state-of-the-art algoeithms side-by-side, therefore limiting progress
within the field
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Algorithms

Fridge

Air
Conditioner

Electric
Furnace

Washing
Machine

Mean

Edge detection
CO

DSC
ExactFHMM
ApproxFHMM
FHMM+SAC
DAE

RNN

Seq2Seq
Seq2Point
OnlineGRU

63.3+07.7
41.1+18.1
65.7£42.3
78.4£56.5
66.7+23.5
63.8+08.0
59.2 £05.7
32.2+11.8
38.4£07.9
28.1+09.5
23.5+12.1
28.8+11.4

224.8+16.4
86.8+£30.5
98.5+85.7
71.5%£36.0
45.5+44.6
139.9+130.2
97.0+40.3
39.3£27.9
46.6+30.6
32.3£25.2
24.8+20.9
25.3%17.1

81.5+01.6
30.2+11.2
56.9+55.4
39.1£17.9
95.3£110.5
26.5%12.0
35.1£19.0
29.4%+15.3
33.9+20.6
27.9%+15.3
27.5%£15.0
34.5+15.0

5.07+00.8
4.8+01.3
105£19.0
6.5+05.7
59.9£17.5
30.7£21.3
3.8+00.7
3.1+01.6
3.5%£01.2
2.3+01.2
2.4+00.9
3.0+01.4

Table 1: MAE Mean # Std. Error: train/test on different set of

buildings, same data set
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Contributions in the paper

* |Implementation of five new neural networks for NILM task.
* Parser for publicly available IDEAL dataset.

* Empirical comparison of five proposed neural networks against state-
of-the-art implementations.



Current neural network approaches
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Current neural network approaches
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Bidirectional Long Short-Term Memory (BILSTM)

BILSTM considers the future readings of aggregate data along with
past while training and predicting the appliance reading.
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BILSTM Model with attention weights

* Attention to each position of the aggregate signal, which can be linked to

state-change of the target appliance.
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Residual Neural Network (ResNet)

* Skip connections preserve information of previous layer.

- D < D
o —
- y, q y

(a). Convolutional Block (b). Identity Block

10



Classification Subnetwork

* Considers state of the target appliance along with regression subnetwork
while training and testing.
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Bidirectional Encoder Representation from Transformer
(BERT)

* BERT adds attention locally to the aggregate reading to understand the
context of the current window sequence.
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Parser For IDEAL Dataset

e |DEAL dataset contains data from 255 UK homes and among which 39
homes have appliance data.

e |DEAL dataset is largest publicly available dataset.

e The dataset parser is created using NILM metadata format.

e This dataset parser is contributed to open-source repo NILMtk for
simplified usage of NILM toolkit for IDEAL dataset
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Experimental Settings

Leave one home out cross validation.

Error (MAE)

DATASET REDD IDEAL
Sequence Length 99 99
Appliances Fridge, Dish Fridge, Washer
Washer, Machine

Microwave,

Washer Dryer
Metric Mean Absolute Mean Absolute

Error (MAE)

14



Comparison of algorithms on REDD Dataset
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Comparison of algorithms on REDD Dataset
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Comparison of algorithms on IDEAL Dataset
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Analysis

BILSTM predicts accurately in comparison with baselines with some false
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Limitations and Future Work

« Compared newly implemented algorithm on two dataset, we are trying to
expand it on more number of datasets across different countries.

* Explanation for better performance of new models.
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Summary
* Implemented five new neural network algorithms for NILM task.
« Contributed dataset parser for IDEAL dataset.

* Qualitative and quantitative comparison of newly implemented algorithms
with baseline.

* New neural networks performed comparable or better than the state-of-the-
art.
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