Accurate and Scalable Gaussian Processes for Fine-grained Air Quality Inference

Zeel B Patel, Palak Purohit, Harsh Patel, Shivam Sahni, Nipun Batra IIT Gandhinagar

AAAI 2022

Motivation

- 8 M deaths per annum worldwide: WHO
- 90% of the world breathes low quality air
- Sparse and non-uniform AQ stations (India has 573 over the demand of 4K)
- Stations are costly

src:https://indianexpress.com/article/india/at-2-5-million-india-tops-list-2 of-pollution-linked-deaths-study-4898337/

Particulate Matter : 2.5 microns (PM_{2.5})

Problem: Air Quality Inference

Related work

Attentional Deep Air Quality Inference Network

Shortcomings

- No scope for domain knowledge
- No uncertainty provision

src: Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).

Our Approach: Gaussian Process (GP) Regression

src: http://www.infinitecuriosity.org/vizgp/

Gaussian Process Regression : Intuition

4.0

Periodic kernel
$$\longrightarrow K(\mathbf{x}, \mathbf{x'}) = \exp\left(-\frac{2\sin^2(\pi ||\mathbf{x} - \mathbf{x'}||/p)}{l^2}\right)$$

• Type: Categorical

One Hot Encoding

Sample	Wind direction	_ ★ →	Sample	Ν	SW	E
1	North (N)		1	1	0	0
2	East (E)		2	0	0	1
3	South-West (SW)		3	0	1	0
		1			/ Π	

Hamming distance kernel¹ $\longrightarrow k(x, x') = \exp\left(-\frac{x \neq x'}{2\ell^2}\right)$

• Features: Time

src:https://urbanemissions.info/delhi-india/delhi-ambientmonitoring-data-timeseries/ • Kernel: Periodic?

• Kernel: (Sq. Exp.) X (Periodic)

• Features: Longitude, Latitude, Temperature, Humidity

Squared Exponential Kernel
$$\longrightarrow K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

ARD (Automatic Relevance Determination)

Non-ARD Kernel
$$\longrightarrow K(\mathbf{x}, \mathbf{x'}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x'}\|^2}{2l^2}\right)$$

ARD Kernel
$$\longrightarrow K(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{|\mathbf{x}|} \frac{(x_i - x'_i)^2}{2l_i^2}\right)$$

• Features: Longitude, Latitude, Temperature, Humidity

Squared Exponential Kernel
$$\longrightarrow K(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{i=1}^{|\mathbf{x}|} \frac{(x_i - x'_i)^2}{2l_i^2}\right)$$

Checking Covariance Non-stationarity

Non-stationary GP

• Plagemann et al.¹

1. Plagemann, Christian, Kristian Kersting, and Wolfram Burgard. "Nonstationary Gaussian process regression using point estimates of local smoothness." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2008.

Non-stationary GP

Scalability

- Cost of GP training: O(n^3), memory required: O(n^2)
- Cost of Batch GP training: O(nm²), memory required: O(m²), m: batch size

Chen, Hao, et al. "Stochastic gradient descent in correlated settings: A study on gaussian processes." Advances in Neural Information Processing Systems 33 (2020).

Algorithm 1: Minibatch SGD

1 Input:
$$\theta^{(0)} \in \mathbb{R}^2$$
, initial step size $\alpha_1 > 0$.
2 for $k = 1, 2, ..., K$ do
3 Randomly sample a subset of indices ξ_k of size m ;
4 Compute the stochastic gradient $g(\theta^{(k)}; \mathbf{X}_{\xi_k}, \mathbf{y}_{\xi_k});$
5 $\alpha_k \leftarrow \frac{\alpha_1}{k};$
6 $\theta^{(k)} \leftarrow \theta^{(k-1)} - \alpha_k g(\theta^{(k-1)}; \mathbf{X}_{\xi_k}, \mathbf{y}_{\xi_k});$
7 end for

Data & Experimental setup

- Hourly granularity
- Datasets
 - Beijing¹ : 36 stations : March 2015
 - London² (KDD Cup 18) : 24 stations : May 2017
- Missing data is filled temporally
- Data scaled to mean 0, std 1
- K-Fold cross-validation

¹Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).

Baselines

- Random Forest Regressor
- IDW (Inverse Distance Weighting)
- XGBoost
- K-Nearest Neighbors
- ADAIN (Attentional Deep Air Quality Inference Network)¹ AAAI '18

¹Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1)

Results - Beijing dataset

Results - London dataset

Results - Predictions

Results - Effect of Automatic Relevance Determination

Future work

Future work

src:https://www.google.com/earth/outreach/special-projects/air-quality/

Summary

- Domain inspired and uncertainty aware Gaussian process model for air quality inference.
- Domain inspired kernels
- Non-stationarity
- Scalable training
- 17% improvement over state-of-the-art