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Motivation

● 8 M deaths per annum worldwide: WHO

● 90% of the world breathes 

low quality air 

● Sparse and non-uniform AQ stations

(India has 573 over the demand of 4K)

● Stations are costly

src:https://indianexpress.com/article/india/at-2-5-million-india-tops-list-

of-pollution-linked-deaths-study-4898337/
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Particulate Matter : 2.5 microns (PM2.5)

3src:https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
src:https://mypositiveparenting.org/2019/11/21/air-pollution-and-health/



Problem: Air Quality Inference
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Related work
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● No scope for domain 

knowledge

● No uncertainty provision

src: Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: 

Learning the Weights of Monitoring Stations. Proceedings of the AAAI Conference on Artificial Intelligence, 

32(1).

Attentional Deep Air Quality Inference Network Shortcomings



Our Approach: Gaussian Process (GP) Regression
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src: http://www.infinitecuriosity.org/vizgp/
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Gaussian Process Regression : Intuition

9src: http://inverseprobability.com/talks/notes/gaussian-processes.html



Gaussian Process Regression - Prior
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Domain Inspired Kernels (Covariance Functions)
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Squared Exponential Kernel

Length scale (𝑙) = 1 Length scale (𝑙) = 0.1



Domain Inspired Kernels (Covariance Functions)
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Periodic kernel

Period (𝑝) = 0.5 Period (𝑝) = 1



Domain Inspired Kernels (Covariance Functions)
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Domain Inspired Kernels (Covariance Functions)

141Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014. Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence, 206: 79–111

● Type: Categorical

Hamming distance kernel1

Sample Wind direction

1 North (N)

2 East (E)

3 South-West (SW)

Sample N SW E

1 1 0 0

2 0 0 1

3 0 1 0

One Hot Encoding



Domain Inspired Kernels (Covariance Functions)
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src: Flaticon.com



Domain Inspired Kernels (Covariance Functions)
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● Features: Time ● Kernel: Periodic?

● Kernel: (Sq. Exp.) (Periodic)

src:https://urbanemissions.info/delhi-india/delhi-ambient-

monitoring-data-timeseries/



Domain Inspired Kernels (Covariance Functions)
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Domain Inspired Kernels (Covariance Functions)
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● Features: Longitude, Latitude, Temperature, Humidity

Squared Exponential Kernel



ARD (Automatic Relevance Determination)
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Non-ARD Kernel

ARD Kernel



Domain Inspired Kernels (Covariance Functions)
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● Features: Longitude, Latitude, Temperature, Humidity

Squared Exponential Kernel



Checking Covariance Non-stationarity
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Cov(𝑺1, ᐧ)



Non-stationary GP
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● Plagemann et al.1

1. Plagemann, Christian, Kristian Kersting, and Wolfram Burgard. "Nonstationary Gaussian process regression using point estimates of local smoothness." Joint 

European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2008.

Input depended length scales



Non-stationary GP



Scalability

● Cost of GP training: O(n^3), memory required: O(n^2)

● Cost of Batch GP training: O(nm^2), memory required: O(m^2), m: batch size

24

Chen, Hao, et al. "Stochastic gradient descent in correlated settings: A study on gaussian processes." Advances in Neural Information Processing Systems 33 (2020).



Data & Experimental setup

● Hourly granularity

● Datasets
○ Beijing1 : 36 stations : March 2015

○ London2 (KDD Cup 18) : 24 stations : May 2017

● Missing data is filled temporally

● Data scaled to mean 0, std 1

● K-Fold cross-validation
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1Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations. Proceedings of the AAAI Conference on 

Artificial Intelligence, 32(1).

2https://www.kdd.org/kdd2018/kdd-cup



Baselines

● Random Forest Regressor

● IDW (Inverse Distance Weighting)

● XGBoost

● K-Nearest Neighbors 

● ADAIN (Attentional Deep Air Quality Inference Network)1 - AAAI ‘18
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1Cheng, W., Shen, Y., Zhu, Y., & Huang, L. (2018). A Neural Attention Model for Urban Air Quality Inference: Learning the Weights of Monitoring Stations. 

Proceedings of the AAAI Conference on Artificial Intelligence, 32(1)



Results - Beijing dataset
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Results - London dataset
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Results - Predictions
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Results - Effect of Automatic Relevance Determination
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Future work
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src:https://ecolink.com/info/six-common-air-pollutants/



Future work
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src:https://www.google.com/earth/outreach/special-projects/air-quality/



Summary

● Domain inspired and uncertainty aware Gaussian process model for air 

quality inference.

● Domain inspired kernels

● Non-stationarity

● Scalable training

● 17% improvement over state-of-the-art
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